996 research outputs found
Modeling of Interstellar Scintillation Arcs from Pulsar B1133+16
The parabolic arc phenomenon visible in the Fourier analysis of the
scintillation spectra of pulsars provides a new method of investigating the
small scale structure in the ionized interstellar medium (ISM). We report
archival observations of the pulsar B1133+16 showing both forward and reverse
parabolic arcs sampled over 14 months. These features can be understood as the
mutual interference between an assembly of discrete features in the scattered
brightness distribution. By model-fitting to the observed arcs at one epoch we
obtain a ``snap-shot'' estimate of the scattered brightness, which we show to
be highly anisotropic (axial ratio >10:1), to be centered significantly off
axis and to have a small number of discrete maxima, which are coarser the
speckle expected from a Kolmogorov spectrum of interstellar plasma density. The
results suggest the effects of highly localized discrete scattering regions
which subtend 0.1-1 mas, but can scatter (or refract) the radiation by angles
that are five or more times larger.Comment: 14 pages, 4 figures, submitted to Astrophysical Journa
On the circularly polarized optical emission from AE Aquarii
The reported nightly mean value of the circular polarization of optical
emission observed from the close binary system AE Aqr is 0.06% (+-) 0.01%. We
discuss a possibility that the observed polarized radiation is emitted mainly
by the white dwarf or its vicinity. We demonstrate that this hypothesis is
rather unlikely since the contribution of the white dwarf to the optical
radiation of the system is too small. This indicates that the polarimetric data
on AE Aqr cannot be used for the evaluation of the surface magnetic field
strength of the white dwarf in this system.Comment: 4 pages, 3 figures, accepted for publication in Astron. & Astrophy
Modifying the Diabetes Prevention Program to Adolescents in a School Setting: A Feasibility Study
The growing epidemic of overweight children has led to a higher prevalence of youth being diagnosed with diabetes, particularly type 2 diabetes. The current study modified the Diabetes Prevention Program (DPP) for use with 7th–10th graders in a school setting. The DPP is an evidence-based lifestyle intervention program that has been translated successfully in various adult settings. Yet the feasibility of modifying the DPP for use with middle and high school students has not been documented. A multidisciplinary university research team collaborated with a local charter school to include a modified DPP as part of the curriculum for one semester. Pre- and posttests included food knowledge, health locus of control, BMI, and performance on the 12-minute Cooper walk/run test. Findings suggest tentatively that the modified DPP was successful at increasing food knowledge and awareness of more rigorous physical activity as well as their association to improved health outcomes. Equally as important, results demonstrate that it is feasible to conduct interventions targeting healthy weight among adolescents in school-based settings by incorporating them in the curriculum.</jats:p
An improved model of the Earth's gravitational field: GEM-T1
Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested
The GEM-T2 gravitational model
The GEM-T2 is the latest in a series of Goddard Earth Models of the terrestrial field. It was designed to bring modeling capabilities one step closer towards ultimately determining the TOPEX/Poseidon satellite's radial position to an accuracy of 10-cm RMS (root mean square). It also improves models of the long wavelength geoid to support many oceanographic and geophysical applications. The GEM-T2 extends the spherical harmonic field to include more than 600 coefficients above degree 36 (which was the limit for its predecessor, GEM-T1). Like GEM-T1, it was produced entirely from satellite tracking data, but it now uses nearly twice as many satellites (31 vs. 17), contains four times the number of observations (2.4 million), has twice the number of data arcs (1132), and utilizes precise laser tracking from 11 satellites. The estimation technique for the solution has been augmented to include an optimum data weighting procedure with automatic error calibration for the gravitational parameters. Results for the GEM-T2 error calibration indicate significant improvement over previous satellite-only models. The error of commission in determining the geoid has been reduced from 155 cm in GEM-T1 to 105 cm for GEM-T2 for the 36 x 36 portion of the field, and 141 cm for the entire model. The orbital accuracies achieved using GEM-T2 are likewise improved. Also, the projected radial error on the TOPEX satellite orbit indicates 9.4 cm RMS for GEM-T2, compared to 24.1 cm for GEM-T1
Gravitational model improvement at the Goddard Space Flight Center
Major new computations of terrestrial gravitational field models were performed by the Geodynamics Branch of Goddard Space Flight Center (GSFC). This development has incorporated the present state of the art results in satellite geodesy and have relied upon a more consistent set of reference constants than was heretofore utilized in GSFC's GEM models. The solutions are complete in spherical harmonic coefficients out to degree 50 for the gravity field parameters. These models include adjustment for a subset of 66 ocean tidal coefficients for the long wavelength components of 12 major ocean tides. This tidal adjustment was made in the presence of 550 other fixed ocean tidal terms representing 32 major and minor ocean tides and the Wahr frequency dependent solid earth tidal model. In addition 5-day averaged values for Earth rotation and polar motion were derived for the time period of 1980 onward. Two types of models were computed. These are satellite only models relying exclusively on tracking data and combination models which have incorporated satellite altimetry and surface gravity data. The satellite observational data base consists of over 1100 orbital arcs of data on 31 satellites. A large percentage of these observations were provided by third generation laser stations (less than 5 cm). A calibration of the model accuracy of the GEM-T2 satellite only solution indicated that it was a significant improvement over previous models based solely upon tracking data. The rms geoid error for this field is 110 cm to degree and order 36. This is a major advancement over GEM-T1 whose errors were estimated to be 160 cm. An error propagation using the covariances of the GEM-T2 model for the TOPEX radial orbit component indicates that the rms radial errors are expected to be 12 cm. The combination solution, PGS-3337, is a preliminary effort leading to the development of GEM-T3. PGS-3337 has incorporated global sets of surface gravity data and the Seasat altimetry to produce a model complete to (50,50). A solution for the dynamic ocean topography to degree and order 10 was included as part of this adjustment
- …