1,138 research outputs found

    Metal-insulator transition in YHx: scaling of the sub-THz conductivity

    Full text link
    The established scaling laws of the conductivity with temperature and doping are strong indications for the quantum nature of the metal-insulator transition in YHx_x. Here we report the first results on the frequency scaling of the conductivity. Samples were brought from the insulating to the metallic phase by carrier doping via illumination. In the metallic phase, the sub-terahertz conductivity coincides with the dc data. These results do not agree with the simplest picture of a quantum-phase transition.Comment: 4 pages, accepted to PR

    Eliashberg analysis of the optical conductivity in superconducting Pr2_2CuOx_{x} (x4x \simeq 4)

    Full text link
    Superconducting Pr2_2CuOx_x, x4x\simeq 4 films with TT^\prime structure and a TcT_c of 27 K have been investigated by millimeter-wave transmission and broadband (infrared-to-ultraviolet) reflectivity measurements in the normal and superconducting state. The results obtained by both experimental methods show a consistent picture of the superconducting condensate formation below TcT_c. An Eliashberg analysis of the data proves dd-wave superconductivity and unitary-limit impurity scattering of the charge carriers below TcT_{c}. The derived electron-exchange boson interaction spectral function I2χ(ω)I^2\chi(\omega) shows only marginal changes at the superconducting transition with the mass enhancement factor λ\lambda, the first inverse moment of I2χ(ω)I^2\chi(\omega), being equal to 4.16 at 30 K and to 4.25 at 4 K.Comment: IOP style, 12 page

    Optical conductivity and penetration depth in MgB2

    Full text link
    The complex conductivity of a MgB2 film has been investigated in the frequency range 4 cm^{-1}< nu < 30 cm^{-1} and for temperatures 2.7 K < T <300 K. The overall temperature dependence of both components of the complex conductivity is reminiscent of BCS-type behavior, although a detailed analysis reveals a number of discrepancies. No characteristic feature of the isotropic BCS gap temperature evolution is observed in the conductivity spectra in the superconducting state. A peak in the temperature dependence of the real part of the conductivity is detected for frequencies below 9 cm^{-1}. The superconducting penetration depth follows a T^2 behavior at low temperatures.Comment: 4 pages, 4 figure

    Highly anisotropic energy gap in superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} from optical conductivity measurements

    Full text link
    We have measured the complex dynamical conductivity, σ=σ1+iσ2\sigma = \sigma_{1} + i\sigma_{2}, of superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} (Tc=22T_{c} = 22 K) at terahertz frequencies and temperatures 2 - 30 K. In the frequency dependence of σ1\sigma_{1} below TcT_{c}, we observe clear signatures of the superconducting energy gap opening. The temperature dependence of σ1\sigma_{1} demonstrates a pronounced coherence peak at frequencies below 15 cm1^{-1} (1.8 meV). The temperature dependence of the penetration depth, calculated from σ2\sigma_{2}, shows power-law behavior at the lowest temperatures. Analysis of the conductivity data with a two-gap model, gives the smaller isotropic s-wave gap of ΔA=3\Delta_{A} = 3 meV, while the larger gap is highly anisotropic with possible nodes and its rms amplitude is Δ0=8\Delta_{0} = 8 meV. Overall, our results are consistent with a two-band superconductor with an s±s_{\pm} gap symmetry.Comment: 6 pages, 4 figures, discussion on pair-barking scattering and possible lifting of the nodes is adde

    Spin excitations of the correlated semiconductor FeSi probed by THz radiation

    Full text link
    By direct measurements of the complex optical conductivity σ(ν)\sigma(\nu) of FeSi we have discovered a broad absorption peak centered at frequency ν0(4.2K)32cm1\nu_{0}(4.2 K) \approx 32 cm^{-1} that develops at temperatures below 20 K. This feature is caused by spin-polaronic states formed in the middle of the gap in the electronic density of states. We observe the spin excitations between the electronic levels split by the exchange field of He=34±6TH_{e}=34\pm 6 T. Spin fluctuations are identified as the main factor determining the formation of the spin polarons and the rich magnetic phase diagram of FeSi.Comment: 5 pages, 4 figure

    Gauge and parametrization dependence in higher derivative quantum gravity

    Get PDF
    The structure of counterterms in higher derivative quantum gravity is reexamined. Nontrivial dependence of charges on the gauge and parametrization is established. Explicit calculations of two-loop contributions are carried out with the help of the generalized renormgroup method demonstrating consistency of the results obtained.Comment: 22 pages, Latex, no figure

    Pressure-dependent optical investigations of α\alpha-(BEDT-TTF)2_2I3_3: tuning charge order and narrow gap towards a Dirac semimetal

    Full text link
    Infrared optical investigations of α\alpha-(BEDT-TTF)2_2I3_3 have been performed in the spectral range from 80 to 8000~cm1^{-1} down to temperatures as low as 10~K by applying hydrostatic pressure. In the metallic state, T>135T > 135~K, we observe a 50\% increase in the Drude contribution as well as the mid-infrared band due to the growing intermolecular orbital overlap with pressure up to 11~kbar. In the ordered state, T<TCOT<T_{\rm CO}, we extract how the electronic charge per molecule varies with temperature and pressure: Transport and optical studies demonstrate that charge order and metal-insulator transition coincide and consistently yield a linear decrease of the transition temperature TCOT_{\rm CO} by 898-9~K/kbar. The charge disproportionation Δρ\Delta\rho diminishes by 0.017 e0.017~e/kbar and the optical gap Δ\Delta between the bands decreases with pressure by -47~cm1^{-1}/kbar. In our high-pressure and low-temperature experiments, we do observe contributions from the massive charge carriers as well as from massless Dirac electrons to the low-frequency optical conductivity, however, without being able to disentangle them unambiguously.Comment: 13 pages, 17 figures, submitted to Phys. Rev.

    表紙、奥付、裏表紙

    Get PDF
    © 2015 Springer Science+Business Media New York. This paper is devoted to a study of the characteristic features of the composition and structure of crude oils from terrigenous Devonian producing deposits in the Minnibaevskii section of the Romashkino and Pervomai fields. Using the SynOil program, we identified the features of the molecular weight distribution of n-paraffins, cyclohexanes, and monoalkylbenzenes associated with the formation and transformation conditions in the crude oil deposits
    corecore