32 research outputs found
Relational lattices via duality
The natural join and the inner union combine in different ways tables of a
relational database. Tropashko [18] observed that these two operations are the
meet and join in a class of lattices-called the relational lattices- and
proposed lattice theory as an alternative algebraic approach to databases.
Aiming at query optimization, Litak et al. [12] initiated the study of the
equational theory of these lattices. We carry on with this project, making use
of the duality theory developed in [16]. The contributions of this paper are as
follows. Let A be a set of column's names and D be a set of cell values; we
characterize the dual space of the relational lattice R(D, A) by means of a
generalized ultrametric space, whose elements are the functions from A to D,
with the P (A)-valued distance being the Hamming one but lifted to subsets of
A. We use the dual space to present an equational axiomatization of these
lattices that reflects the combinatorial properties of these generalized
ultrametric spaces: symmetry and pairwise completeness. Finally, we argue that
these equations correspond to combinatorial properties of the dual spaces of
lattices, in a technical sense analogous of correspondence theory in modal
logic. In particular, this leads to an exact characterization of the finite
lattices satisfying these equations.Comment: Coalgebraic Methods in Computer Science 2016, Apr 2016, Eindhoven,
Netherland