48 research outputs found

    Heterogeneous Bond Percolation on Multitype Networks with an Application to Epidemic Dynamics

    Get PDF
    Considerable attention has been paid, in recent years, to the use of networks in modeling complex real-world systems. Among the many dynamical processes involving networks, propagation processes -- in which final state can be obtained by studying the underlying network percolation properties -- have raised formidable interest. In this paper, we present a bond percolation model of multitype networks with an arbitrary joint degree distribution that allows heterogeneity in the edge occupation probability. As previously demonstrated, the multitype approach allows many non-trivial mixing patterns such as assortativity and clustering between nodes. We derive a number of useful statistical properties of multitype networks as well as a general phase transition criterion. We also demonstrate that a number of previous models based on probability generating functions are special cases of the proposed formalism. We further show that the multitype approach, by naturally allowing heterogeneity in the bond occupation probability, overcomes some of the correlation issues encountered by previous models. We illustrate this point in the context of contact network epidemiology.Comment: 10 pages, 5 figures. Minor modifications were made in figures 3, 4 and 5 and in the text. Explanations and references were adde

    Erratic Flu Vaccination Emerges from Short-Sighted Behavior in Contact Networks

    Get PDF
    The effectiveness of seasonal influenza vaccination programs depends on individual-level compliance. Perceptions about risks associated with infection and vaccination can strongly influence vaccination decisions and thus the ultimate course of an epidemic. Here we investigate the interplay between contact patterns, influenza-related behavior, and disease dynamics by incorporating game theory into network models. When individuals make decisions based on past epidemics, we find that individuals with many contacts vaccinate, whereas individuals with few contacts do not. However, the threshold number of contacts above which to vaccinate is highly dependent on the overall network structure of the population and has the potential to oscillate more wildly than has been observed empirically. When we increase the number of prior seasons that individuals recall when making vaccination decisions, behavior and thus disease dynamics become less variable. For some networks, we also find that higher flu transmission rates may, counterintuitively, lead to lower (vaccine-mediated) disease prevalence. Our work demonstrates that rich and complex dynamics can result from the interaction between infectious diseases, human contact patterns, and behavior

    Post-exposure prophylaxis during pandemic outbreaks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the rise of the second pandemic wave of the novel influenza A (H1N1) virus in the current season in the Northern Hemisphere, pandemic plans are being carefully re-evaluated, particularly for the strategic use of antiviral drugs. The recent emergence of oseltamivir-resistant in treated H1N1 patients has raised concerns about the prudent use of neuraminidase inhibitors for both treatment of ill individuals and post-exposure prophylaxis of close contacts.</p> <p>Methods</p> <p>We extended an established population dynamical model of pandemic influenza with treatment to include post-exposure prophylaxis of close contacts. Using parameter estimates published in the literature, we simulated the model to evaluate the combined effect of treatment and prophylaxis in minimizing morbidity and mortality of pandemic infections in the context of transmissible drug resistance.</p> <p>Results</p> <p>We demonstrated that, when transmissible resistant strains are present, post-exposure prophylaxis can promote the spread of resistance, especially when combined with aggressive treatment. For a given treatment level, there is an optimal coverage of prophylaxis that minimizes the total number of infections (final size) and this coverage decreases as a higher proportion of infected individuals are treated. We found that, when treatment is maintained at intermediate levels, limited post-exposure prophylaxis provides an optimal strategy for reducing the final size of the pandemic while minimizing the total number of deaths. We tested our results by performing a sensitivity analysis over a range of key model parameters and observed that the incidence of infection depends strongly on the transmission fitness of resistant strains.</p> <p>Conclusion</p> <p>Our findings suggest that, in the presence of transmissible drug resistance, strategies that prioritize the treatment of only ill individuals, rather than the prophylaxis of those suspected of being exposed, are most effective in reducing the morbidity and mortality of the pandemic. The impact of post-exposure prophylaxis depends critically on the treatment level and the transmissibility of resistant strains and, therefore, enhanced surveillance and clinical monitoring for resistant mutants constitutes a key component of any comprehensive plan for antiviral drug use during an influenza pandemic.</p

    Variability in transmissibility of the 2009 H1N1 pandemic in Canadian communities

    Get PDF
    Abstract Background The prevalence and severity of the 2009 H1N1 pandemic appeared to vary significantly across populations and geographic regions. We sought to investigate the variability in transmissibility of H1N1 pandemic in different health regions (including urban centres and remote, isolated communities) in the province of Manitoba, Canada. Methods The Richards model was used to fit to the daily number of laboratory-confirmed cases and estimate transmissibility (referred to as the basic reproduction number, R0), doubling times, and turning points of outbreaks in both spring and fall waves of the H1N1 pandemic in several health regions. Results We observed considerable variation in R0 estimates ranging from 1.55 to 2.24, with confidence intervals ranging from 1.45 to 2.88, for an average generation time of 2.9 days, and shorter doubling times in some remote and isolated communities compared to urban centres, suggesting a more rapid spread of disease in these communities during the first wave. For the second wave, R e , the effective reproduction number, is estimated to be lower for remote and isolated communities; however, outbreaks appear to have been driven by somewhat higher transmissibility in urban centres. Conclusions There was considerable geographic variation in transmissibility of the 2009 pandemic outbreaks. While highlighting the importance of estimating R0 for informing health responses, the findings indicate that projecting the transmissibility for large-scale epidemics may not faithfully characterize the early spread of disease in remote and isolated communities

    How to Minimize the Attack Rate during Multiple Influenza Outbreaks in a Heterogeneous Population

    Get PDF
    <div><h3>Background</h3><p>If repeated interventions against multiple outbreaks are not feasible, there is an optimal level of control during the first outbreak. Any control measures above that optimal level will lead to an outcome that may be as sub-optimal as that achieved by an intervention that is too weak. We studied this scenario in more detail.</p> <h3>Method</h3><p>An age-stratified ordinary-differential-equation model was constructed to study infectious disease outbreaks and control in a population made up of two groups, adults and children. The model was parameterized using influenza as an example. This model was used to simulate two consecutive outbreaks of the same infectious disease, with an intervention applied only during the first outbreak, and to study how cumulative attack rates were influenced by population composition, strength of inter-group transmission, and different ways of triggering and implementing the interventions. We assumed that recovered individuals are fully immune and the intervention does not confer immunity.</p> <h3>Results/Conclusion</h3><p>The optimal intervention depended on coupling between the two population sub-groups, the length, strength and timing of the intervention, and the population composition. Population heterogeneity affected intervention strategies only for very low cross-transmission between groups. At more realistic values, coupling between the groups led to synchronization of outbreaks and therefore intervention strategies that were optimal in reducing the attack rates for each subgroup and the population overall coincided. For a sustained intervention of low efficacy, early intervention was found to be best, while at high efficacies, a delayed start was better. For short interventions, a delayed start was always advantageous, independent of the intervention efficacy. For most scenarios, starting the intervention after a certain cumulative proportion of children were infected seemed more robust in achieving close to optimal outcomes compared to a strategy that used a specified duration after an outbreak’s beginning as the trigger.</p> </div

    Would school closure for the 2009 H1N1 influenza epidemic have been worth the cost?: a computational simulation of Pennsylvania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the 2009 H1N1 influenza epidemic, policy makers debated over whether, when, and how long to close schools. While closing schools could have reduced influenza transmission thereby preventing cases, deaths, and health care costs, it may also have incurred substantial costs from increased childcare needs and lost productivity by teachers and other school employees.</p> <p>Methods</p> <p>A combination of agent-based and Monte Carlo economic simulation modeling was used to determine the cost-benefit of closing schools (vs. not closing schools) for different durations (range: 1 to 8 weeks) and symptomatic case incidence triggers (range: 1 to 30) for the state of Pennsylvania during the 2009 H1N1 epidemic. Different scenarios varied the basic reproductive rate (R<sub>0</sub>) from 1.2, 1.6, to 2.0 and used case-hospitalization and case-fatality rates from the 2009 epidemic. Additional analyses determined the cost per influenza case averted of implementing school closure.</p> <p>Results</p> <p>For all scenarios explored, closing schools resulted in substantially higher net costs than not closing schools. For R<sub>0 </sub>= 1.2, 1.6, and 2.0 epidemics, closing schools for 8 weeks would have resulted in median net costs of 21.0billion(9521.0 billion (95% Range: 8.0 - 45.3billion).Themediancostperinfluenzacaseavertedwouldhavebeen45.3 billion). The median cost per influenza case averted would have been 14,185 (5,423−5,423 - 30,565) for R<sub>0 </sub>= 1.2, 25,253(25,253 (9,501 - 53,461)forR<sub>0</sub>=1.6,and53,461) for R<sub>0 </sub>= 1.6, and 23,483 (8,870−8,870 - 50,926) for R<sub>0 </sub>= 2.0.</p> <p>Conclusions</p> <p>Our study suggests that closing schools during the 2009 H1N1 epidemic could have resulted in substantial costs to society as the potential costs of lost productivity and childcare could have far outweighed the cost savings in preventing influenza cases.</p

    Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many parts of the world, the exponential growth rate of infections during the initial epidemic phase has been used to make statistical inferences on the reproduction number, <it>R</it>, a summary measure of the transmission potential for the novel influenza A (H1N1) 2009. The growth rate at the initial stage of the epidemic in Japan led to estimates for <it>R </it>in the range 2.0 to 2.6, capturing the intensity of the initial outbreak among school-age children in May 2009.</p> <p>Methods</p> <p>An updated estimate of <it>R </it>that takes into account the epidemic data from 29 May to 14 July is provided. An age-structured renewal process is employed to capture the age-dependent transmission dynamics, jointly estimating the reproduction number, the age-dependent susceptibility and the relative contribution of imported cases to secondary transmission. Pitfalls in estimating epidemic growth rates are identified and used for scrutinizing and re-assessing the results of our earlier estimate of <it>R</it>.</p> <p>Results</p> <p>Maximum likelihood estimates of <it>R </it>using the data from 29 May to 14 July ranged from 1.21 to 1.35. The next-generation matrix, based on our age-structured model, predicts that only 17.5% of the population will experience infection by the end of the first pandemic wave. Our earlier estimate of <it>R </it>did not fully capture the population-wide epidemic in quantifying the next-generation matrix from the estimated growth rate during the initial stage of the pandemic in Japan.</p> <p>Conclusions</p> <p>In order to quantify <it>R </it>from the growth rate of cases, it is essential that the selected model captures the underlying transmission dynamics embedded in the data. Exploring additional epidemiological information will be useful for assessing the temporal dynamics. Although the simple concept of <it>R </it>is more easily grasped by the general public than that of the next-generation matrix, the matrix incorporating detailed information (e.g., age-specificity) is essential for reducing the levels of uncertainty in predictions and for assisting public health policymaking. Model-based prediction and policymaking are best described by sharing fundamental notions of heterogeneous risks of infection and death with non-experts to avoid potential confusion and/or possible misuse of modelling results.</p
    corecore