182 research outputs found
Alternaria dauci, agent causal des brûlures foliaires est pathogène sur différentes espèces végétales
Alternaria dauci, agent causal des brûlures foliaires est pathogène sur différentes espèces végétale
Is there variety Ă— isolate interaction in the polygenic quantitative resistance of carrot to Alternaria dauci ?
Horizontal and polygenic resistance is race-nonspecific and, therefore, more durable, unlike vertical resistance, which is race-specific and unstable. However, this division is perhaps not so obvious since some cultivar Ă— isolate interactions have already been observed for plant species with partial resistance. Carrot is known to be partially resistant to Alternaria dauci, but it is relevant for breeders to study cultivar Ă— isolate interactions in order to develop durable resistant varieties. For this purpose, 12 highly diverse carrot genotypes and one segregating population were inoculated in a tunnel or in a glass house with 11 isolates of A. dauci that also represented a high diversity in terms of geographical origin, aggressiveness and genetic diversity. Disease severity values were assessed three times in the tunnel in a one-year experiment (2002) and twice in the glass house in an experiment over two consecutive years (2011 and 2012). The interaction of isolate with genotype was non-significant in the tunnel, and the same result was obtained in the glasshouse for both years of study except for the first scoring date in 2011, suggesting that the partial resistance of carrot to A. dauci is probably mainly explained by major QTLs that confer resistance to a large number of isolates and, potentially, some minor isolate-specific QTLs as well
Is quantitative resistance qualitative? An example with two Alternaria Leaf Blight resistant carrot genotypes and four resistance assessment techniques
International audienc
Evaluation of different methods for the characterization of carrot resistance to the alternaria leaf blight pathogen (Alternaria dauci) revealed two qualitatively different resistances
Alternaria leaf blight (ALB), caused by Alternaria dauci, is one of the most damaging foliar diseases of carrot worldwide. The aim of this study was to compare different methods for evaluating levels of carrot resistance to ALB. Three techniques were investigated by comparison with a visual disease assessment control: in vivo conidial germination, a bioassay based on a drop-inoculation method, and in planta quantification of fungal biomass by quantitative PCR (Q-PCR). Three carrot cultivars showing different degrees of resistance to A. dauci were used, i.e. a susceptible cultivar (Presto) and two partially resistant genotypes (Texto and Bolero), challenged with an aggressive or a very aggressive isolate of A. dauci. Both partially resistant genotypes produced a higher mean number of germ tubes per conidium (up to 3·42±0·35) than the susceptible one (1·26±0·18). The drop-inoculation results allowed one of the partially resistant genotypes (Bolero, log10(S+1) = 1·34±0·13) to be distinguished from the susceptible one (1·90±0·13). By contrast, fungal growth measured by Q-PCR clearly differentiated the two partially resistant genotypes with log10(I) values of 2·77±0·13 compared to the susceptible cultivar (3·65±0·13) at 15 days post-inoculation. This result was strongly correlated (r2 = 0·91) with the disease severity index scored at the same date. Data obtained with the different assessment methods strongly suggest that the Texto and Bolero genotypes have different genetic resistance sources
Evaluating aggressiveness and host range of Alternaria dauci in a controlled environment
The aggressiveness of Alternaria dauci isolates was investigated in greenhouse conditions. Twenty-seven isolates were pre-selected from a large collection to represent high diversity according to geographic or host origins and intergenic spacer (IGS) polymorphism. IGS sequence analysis revealed that isolates were grouped within three different clusters. Eleven isolates were selected and inoculated on a susceptible carrot cultivar. Three criteria (mean lesion number, mean necrotic leaf area and mean disease index) were used to assess the aggressiveness of isolates. Continuous variation in aggressiveness was shown and no clear division into isolate classes was evident. For the host range study, two isolates were inoculated under greenhouse conditions onto nine cultivated Apiaceae species, two wild Daucus species and six cultivated non-Apiaceae species representing six botanical families. Lesions varying in severity were observed on all dicot species (Apiaceae and non-Apiaceae), but no symptoms developed on the two monocots studied (leek and sweetcorn). Plant species were also differentiated on the basis of expanding lesions (cultivated and wild carrot, dill and fennel) or non-expanding lesions (other dicot species). Typical A. dauci conidia were observed after in vitro incubation of leaves with symptoms. Fungal structures were isolated from lesions and A. dauci was confirmed on the basis of conidial morphology and specific conventional PCR results. Genotyping of individual isolates performed with microsatellite markers confirmed the presence of the inoculated isolate. The results clearly showed that, in controlled conditions, the host range of A. dauci is not restricted to carrot
First Report of Root and Collar Rot Caused by Fusarium tricinctum and Fusarium avenaceum on Carrot in France
In 2017, carrot (Daucus carota L.) seed production represented around 22% of the area devoted to the production of vegetable fine seeds. Since 2015, symptoms of root and collar rot have been observed in carrot seed parcels located in the Central Region, one of the most important production zone in France. Diseased plants became dried prematurely, compromising seed development. Depending on the year and the climatic conditions, the disease in a same field can be considered as epidemic (rate losses between 30 to 100% of plants in 2016) or can impact plants more sporadically (less than 10% in 2017 and 2018). Sixteen diseased carrot samples (Nantaise type) were collected from five fields of seed production in the Central Region: two fields in 2016 and 2017, one field in 2018. Seven fungal isolates, obtained from lesions, were grown on Potato Dextrose Agar (PDA) medium and incubated for one week at 20°C in darkness. From the colony top, fluffy mycelium pigmented in pink, red, purple or orange was observed, with a red color at the reverse. To induce sporulation, isolates were grown on Synthetischer Nährstoffarmer Agar (SNA) medium during three weeks at 24°C in near-UV radiations under a 12h-photoperiod. Four isolates (FT001, FT003, FT007, FT017) developed orange sporodochia with lunar or crescent-shaped macroconidia (40.3 ± 0.8 × 5.9 ± 0.1 µm; n=90) and lime or pear-shaped microconidia (10.7 ± 0.2 × 7.7 ± 0.2 µm; n=60), as described in Fusarium tricinctum (Leslie and Summerell 2006). Three isolates (FA001, FA002, FA006) developed orange sporodochia with sickle-shaped macroconidia (50.5 ± 1.1 × 5.0 ± 0.1 µm; n= 60), but no microconidia, as observed in Fusarium avenaceum (Leslie and Summerell 2006). To confirm the identification, DNA was extracted from the mycelium of the seven isolates and molecular markers (ATP citrate lyase, ACL1; RNA polymerase II, RPB2) were used for PCR amplification (Gräfenhan et al. 2011; O’Donnell et al. 2013). The ACL1 sequences from the seven field isolates (GenBank Accession numbers MK183788-MK183791; MK181528-MK181530) were 99-100% identical with the ACL1 sequence of a reference F. tricinctum isolate (query coverages 99-100%; E-values of 0.0) and a reference F. avenaceum isolate (query coverages 98-99%; E-values of 0.0) [respectively DAOM 235630 isolate, GenBank Acc. No. JX397813 and BBA64135 isolate, GenBank Acc. No. JX397768, Niessen et al. 2012]. Using RPB2, sequences from field isolates (GenBank Acc. No. MK183109-MK183115) were 98.5-99.9% identical with the RPB2 sequence of a reference F. tricinctum isolate (query coverages 96-100%; E-values of 0.0) and a reference F. avenaceum isolate (query coverages 95-100%; E-values of 0.0) [respectively MRC 1895 isolate, GenBank Acc. No. MH582113 and MRC 1413 isolate, GenBank Acc. No. MH582082, O’Donnell et al. 2018]. To confirm pathogenicity, FT001 and FA002 were inoculated on collars of 10-weeks old carrot plants in the greenhouse. Forty plants per isolate and 40 control plants were used. Ten microliters of a conidial suspension (105 conidia.mL-1) - or sterile water for the controls - were deposited at the collar, previously wounded using a scalpel blade. Necrotic lesions developed at 20 dpi (FT001) and at 30 dpi (FA002). Fusarium tricinctum and F. avenaceum were re-isolated from the lesions and identified by sequencing using ACL1 and RPB2 markers. No isolation of Fusarium was obtained from the controls. To our knowledge, this is the first report of F. tricinctum and F. avenaceum in carrot in France
One Round Threshold Discrete-Log Key Generation without Private Channels
International audiencePedersen designed the first scheme for generating Discrete-Log keys without any trusted dealer in 1991. As this protocol is simple and efficient, it appeared to be very attractive. For a long time, this robust algorithm has been trusted as being secure. However, in 1999, Gennaro et al. proved that one of the requirements is not guaranteed: more precisely, the property that the key is uniformly distributed in the key space. Their main objective was to repair the security flow without sacrificing on efficiency. As a result, the protocol became secure but somehow unpractical. In particular, the complaint phase, in which cheaters are thrown out, makes the scheme overly complex and difficult to deal with in practical situations. In order to avoid this phase and other drawbacks such as the initialization phase where private channels have to be created, we present a one-round scheme which generates a discrete-log key with public channels only. Finally, we show how to improve the efficiency of our algorithm when the number of servers increases
- …