16 research outputs found

    Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1

    Get PDF
    Author contributions: J.E.K., L.B., C.N.S., and K.E.B. designed research; J.E.K., F.K., S.B., M.M.A., A.V.-G., T.V., L.O.L., L.B., K.R.B., and S.P.-P. performed research; W.Y., A.C., S.S., T.N.W., J.W.H., and R.A.C. contributed new reagents/analytic tools; J.E.K., L.B., S.S., S.P., and K.E.B. analyzed data; and J.E.K. and K.E.B. wrote the paper

    The effect of PPAR ligands to modulate glucose metabolism alters the incorporation of metabolic precursors into proteoglycans synthesized by human vascular smooth muscle cells

    No full text
    PPAR ligands are important effectors of energy metabolism and can modify proteoglycan synthesis by vascular smooth muscle cells (VSMCs). Describing the cell biology of these important clinical agents is important for understanding their full clinical potential, including toxicity. Troglitazone (10 µM) and fenofibrate (30 µM) treatment of VSMCs reduces (35S)-sulphate incorporation into proteoglycans due to a reduction of glycosaminoglycan (GAG) chain length. Conversely, under physiological glucose conditions (5.5 mM), the same treatment increases (3H)-glucosamine incorporation into GAGs. This apparent paradox is the consequence of an increase in the intracellular (3H)-galactosamine specific activity from 48.2 ± 3.2 µCi/ µmol to 90.7 ± 11.0 µCi/ µmol (P < 0.001) and 57.1 ± 2.6 µCi/ µmol (P < 0.05) when VSMCs were treated with troglitazone and fenofibrate, respectively. The increased specific activity observed with troglitazone (10 µM) treatment correlates with a two-fold increase in glucose consumption, while fenofibrate (50 µM) treatment showed a modest (14.6%) increase in glucose consumption. We conclude that the sole use of glucosamine precursors to assess GAG biosynthesis results in misleading conclusions when assessing the effect of PPAR ligands on VSMC proteoglycan biosynthesis

    Polyinosine-Polycytidylic Acid Stimulates Versican Accumulation in the Extracellular Matrix Promoting Monocyte Adhesion

    No full text
    Viral infections are known to exacerbate asthma and other lung diseases in which chronic inflammatory processes are implicated, but the mechanism is not well understood. The viral mimetic, polyinosine-polycytidylic acid, causes accumulation of a versican- and hyaluronan-enriched extracellular matrix (ECM) by human lung fibroblasts with increased capacity for monocyte adhesion. The fivefold increase in versican retention in this ECM is due to altered compartmentalization, with decreased degradation of cell layer–associated versican, rather than an increase in total accumulation in the culture. This is consistent with decreased mRNA levels for all of the versican splice variants. Reduced versican degradation is further supported by low levels of the epitope, DPEAAE, a product of versican digestion by a disintegrin-like and metallopeptidase with thrombospondin type 1 motif enzymes, in the ECM. The distribution of hyaluronan is similarly altered with a 3.5-fold increase in the cell layer. Pulse–chase studies of radiolabeled hyaluronan show a 50% reduction in the rate of loss from the cell layer over 24 hours. Formation of monocyte-retaining, hyaluronidase-sensitive ECMs can be blocked by the presence of anti-versican antibodies. In comparison, human lung fibroblasts treated with the cytokines, IL-1β plus TNF-α, synthesize increased amounts of hyaluronan, but do not retain it or versican in the ECM, which, in turn, does not retain monocytes. These results highlight an important role for versican in the hyaluronan-dependent binding of monocytes to the ECM of lung fibroblasts stimulated with polyinosine-polycytidylic acid

    Hyaluronan and hyaluronan binding proteins accumulate differentially in both human type 1 diabetic islets and lymphoid tissues and associate with inflammatory cells in insulitis.

    No full text
    Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that is present in pancreatic islets, but little is known about its involvement in the development of human type 1 diabetes (T1D). We have evaluated whether pancreatic islets and lymphoid tissues of T1D and nondiabetic organ donors differ in the amount and distribution of HA and HA-binding proteins (hyaladherins), such as inter-α-inhibitor (IαI), versican, and tumor necrosis factor–stimulated gene-6 (TSG-6). HA was dramatically increased both within the islet and outside the islet endocrine cells, juxtaposed to islet microvessels in T1D. In addition, HA was prominent surrounding immune cells in areas of insulitis. IαI and versican were present in HA-rich areas of islets, and both molecules accumulated in diabetic islets and regions exhibiting insulitis. TSG-6 was observed within the islet endocrine cells and in inflammatory infiltrates. These patterns were only observed in tissues from younger donors with disease duration of <10 years. Furthermore, HA and IαI amassed in follicular germinal centers and in T-cell areas in lymph nodes and spleens in T1D patients compared with control subjects. Our observations highlight potential roles for HA and hyaladherins in the pathogenesis of diabetes
    corecore