55 research outputs found

    Sleep propensity under forced desynchrony in a model of arousal state dynamics

    No full text
    An improvement to our current quantitative model of arousal state dynamics is presented that more accurately predicts sleep propensity as measured with sleep dynamics depending on circadian phase and prior wakefulness. A nonlinear relationship between the circadian variables within the dynamic circadian oscillator model is introduced to account for the skewed shape of the circadian rhythm of alertness that peaks just prior to the onset of the biological night (the "wake maintenance zone") and has a minimum toward the end of the biological night. The revised circadian drive thus provides a strong inhibitory input to the sleep-active neuronal population in the evening, counteracting the excitatory effects of the increased homeostatic sleep drive as originally proposed in the opponent process model of sleep-wake regulation. The revised model successfully predicts the sleep propensity profile as reflected in the dynamics of the total sleep time, sleep onset latency, wake/sleep ratio, and sleep efficiency during a wide range of experimental protocols. Specifically, all of these sleep measures are predicted for forced desynchrony schedules with day lengths ranging from 1.5 to 42.85 h and scheduled time in bed from 0.5 to 14.27 h. The revised model is expected to facilitate more accurate predictions of sleep under normal conditions as well as during circadian misalignment, for example, during shiftwork and jetlag. © SAGE Publications

    Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics

    No full text
    A model of arousal dynamics is applied to predict objective performance and subjective sleepiness measures, including lapses and reaction time on a visual Performance Vigilance Test (vPVT), performance on a mathematical addition task (ADD), and the Karolinska Sleepiness Scale (KSS). The arousal dynamics model is comprised of a physiologically based flip-flop switch between the wake- and sleep-active neuronal populations and a dynamic circadian oscillator, thus allowing prediction of sleep propensity. Published group-level experimental constant routine (CR) and forced desynchrony (FD) data are used to calibrate the model to predict performance and sleepiness. Only the studies using dim light (<15 lux) during alertness measurements and controlling for sleep and entrainment before the start of the protocol are selected for modeling. This is done to avoid the direct alerting effects of light and effects of prior sleep debt and circadian misalignment on the data. The results show that linear combination of circadian and homeostatic drives is sufficient to predict dynamics of a variety of sleepiness and performance measures during CR and FD protocols, with sleep-wake cycles ranging from 20 to 42.85 h and a 2:1 wake-to-sleep ratio. New metrics relating model outputs to performance and sleepiness data are developed and tested against group average outcomes from 7 (vPVT lapses), 5 (ADD), and 8 (KSS) experimental protocols, showing good quantitative and qualitative agreement with the data (root mean squared error of 0.38, 0.19, and 0.35, respectively). The weights of the homeostatic and circadian effects are found to be different between the measures, with KSS having stronger homeostatic influence compared with the objective measures of performance. Using FD data in addition to CR data allows us to challenge the model in conditions of both acute sleep deprivation and structured circadian misalignment, ensuring that the role of the circadian and homeostatic drives in performance is properly captured. © 2018, © 2018 The Author(s)

    A unified model of melatonin, 6-sulfatoxymelatonin, and sleep dynamics

    No full text
    A biophysical model of the key aspects of melatonin synthesis and excretion has been developed, which is able to predict experimental dynamics of melatonin in plasma and saliva, and of its urinary metabolite 6-sulfatoxymelatonin (aMT6s). This new model is coupled to an established model of arousal dynamics, which predicts sleep and circadian dynamics based on light exposure and times of wakefulness. The combined model thus predicts melatonin levels over the sleep-wake/dark-light cycle and enables prediction of melatonin-based circadian phase markers, such as dim light melatonin onset (DLMO) and aMT6s acrophase under conditions of normal sleep and circadian misalignment. The model is calibrated and tested against group average data from 10 published experimental studies and is found to reproduce quantitatively the key dynamics of melatonin and aMT6s, including the timing of release and amplitude, as well as response to controlled lighting and shift work. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Lt

    Modeling melanopsin‐mediated effects of light on circadian phase, melatonin suppression, and subjective sleepiness

    No full text
    A physiologically based model of arousal dynamics is improved to incorporate the effects of the light spectrum on circadian phase resetting, melatonin suppression, and subjective sleepiness. To account for these nonvisual effects of light, melanopic irradiance replaces photopic illuminance that was used previously in the model. The dynamic circadian oscillator is revised according to the melanopic irradiance definition and tested against experimental circadian phase resetting dose‐response and phase response data. Melatonin suppression function is recalibrated against melatonin dose‐response data for monochromatic and polychromatic light sources. A new light‐dependent term is introduced into the homeostatic weight component of subjective sleepiness to represent the direct alerting effect of light; the new term responds to light change in a time‐dependent manner and is calibrated against experimental data. The model predictions are compared to a total of 14 experimental studies containing 26 data sets for 14 different spectral light profiles. The revised melanopic model shows on average 1.4 times lower prediction error for circadian phase resetting compared to the photopic‐based model, 3.2 times lower error for melatonin suppression, and 2.1 times lower error for subjective sleepiness. Overall, incorporating melanopic irradiance allowed simulation of wavelength‐dependent responses to light and could explain the majority of the observations. Moving forward, models of circadian phase resetting and the direct effects of light on alertness and sleep need to use nonvisual photoreception‐based measures of light, for example, melanopic irradiance, instead of the traditionally used illuminance based on the visual system

    INTER-PATTERN TRANSITIONS IN A NOISY BURSTING CELL

    No full text
    corecore