148 research outputs found
Continuum simulation of the discharge of the granular silo: a validation test for the mu(I)-visco-plastic flow law
Using both a continuum Navier-Stokes solver, with the mu(I)-flow-law
implemented to model the viscous behavior, and the discrete Contact Dynamics
algorithm, the discharge of granular silos is simulated in two dimensions from
the early stages of the discharge until complete release of the material. In
both cases, the Beverloo scaling is recovered. We first do not attempt
quantitative comparison, but focus on the qualitative behavior of velocity and
pressure at different locations in the flow. A good agreement is obtained in
the regions of rapid flows, while areas of slow creep are not entirely captured
by the continuum model. The pressure field shows a general good agreement. The
evolution of the free surface implies differences, however, the bulk
deformation is essentially identical in both approaches. The influence of the
parameters of the mu(I)-flow-law is systematically investigated, showing the
importance of the dependence on the inertial number I to achieve quantitative
agreement between continuum and discrete discharge. The general ability of the
continuum model to reproduce qualitatively the granular behavior is found to be
very encouraging.Comment: 12 pages, 15 figure
Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami
The 11 March 2011 Tohoku tsunami is simulated using the quadtree-adaptive Saint-Venant solver implemented within the Gerris Flow Solver. The spatial resolution is adapted dynamically from 250 m in flooded areas up to 250 km for the areas at rest. Wave fronts are tracked at a resolution of 1.8 km in deep water. The simulation domain extends over 73° of both latitude and longitude and covers a significant part of the north-west Pacific. The initial wave elevation is obtained from a source model derived using seismic data only. Accurate long-distance wave prediction is demonstrated through comparison with DART buoys timeseries and GLOSS tide gauges records. The model also accurately predicts fine-scale flooding compared to both satellite and survey data. Adaptive mesh refinement leads to orders-of-magnitude gains in computational efficiency compared to non-adaptive methods. The study confirms that consistent source models for tsunami initiation can be obtained from seismic data only. However, while the observed extreme wave elevations are reproduced by the model, they are located further south than in the surveyed data. Comparisons with inshore wave buoys data indicate that this may be due to an incomplete understanding of the local wave generation mechanisms
Transition in a numerical model of contact line dynamics and forced dewetting
We investigate the transition to a Landau-Levich-Derjaguin film in forced
dewetting using a quadtree adaptive solution to the Navier-Stokes equations
with surface tension. We use a discretization of the capillary forces near the
receding contact line that yields an equilibrium for a specified contact angle
called the numerical contact angle. Despite the well-known
contact line singularity, dynamic simulations can proceed without any explicit
additional numerical procedure. We investigate angles from to
and capillary numbers from to where the mesh size
is varied in the range of to of the capillary length
. To interpret the results, we use Cox's theory which involves a
microscopic distance and a microscopic angle . In the numerical
case, the equivalent of is the angle and we find
that Cox's theory also applies. We introduce the scaling factor or gauge
function so that and estimate this gauge function by
comparing our numerics to Cox's theory. The comparison provides a direct
assessment of the agreement of the numerics with Cox's theory and reveals a
critical feature of the numerical treatment of contact line dynamics: agreement
is poor at small angles while it is better at large angles. This scaling factor
is shown to depend only on and the viscosity ratio . In the
case of small , we use the prediction by Eggers [Phys. Rev. Lett.,
vol. 93, pp 094502, 2004] of the critical capillary number for the
Landau-Levich-Derjaguin forced dewetting transition. We generalize this
prediction to large and arbitrary and express the critical
capillary number as a function of and . An analogy can be drawn
between and the numerical slip length.Comment: This version of the paper includes the corrections indicated in Ref.
[1
The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra
The granular silo is one of the many interesting illustrations of the
thixotropic property of granular matter: a rapid flow develops at the outlet,
propagating upwards through a dense shear flow while material at the bottom
corners of the container remains static. For large enough outlets, the
discharge flow is continuous; however, by contrast with the clepsydra for which
the flow velocity depends on the height of fluid left in the container, the
discharge rate of granular silos is constant. Implementing a plastic rheology
in a 2D Navier-Stokes solver (following the mu(I)-rheology or a constant
friction), we simulate the continuum counterpart of the granular silo. Doing
so, we obtain a constant flow rate during the discharge and recover the
Beverloo scaling independently of the initial filling height of the silo. We
show that lowering the value of the coefficient of friction leads to a
transition toward a different behavior, similar to that of a viscous fluid, and
where the filling height becomes active in the discharge process. The pressure
field shows that large enough values of the coefficient of friction (
0.3) allow for a low-pressure cavity to form above the outlet, and can thus
explain the Beverloo scaling. In conclusion, the difference between the
discharge of a hourglass and a clepsydra seems to reside in the existence or
not of a plastic yield stress.Comment: 6 pages, 6 figure
L'aléa tsunami à Wallis et Futuna : modélisation numérique et inventaire des tsunamis (préparé pour l'Administration supérieure du Territoire de Wallis et Futuna)
A projection method for multiphase flows
An Eulerian projection approach for incompressible variable-density two-phase flows is presented. The Navier-Stokes equations governing these flows are reformulated to take the form of the corresponding equations for the lighter phase with a constant density, which can be efficiently solved using standard numerical methods. The effect of the additional mass in the heavier phase is accounted for by a forcing term, which is determined from the solution of an artificial velocity field. This artificial field is subjected solely to inertial and gravity forces as well as the force coupling the flow field and the artificial field. The phase interface in this purely Eulerian approach is described using the level-set method. Results for two-dimensional simulations of the Rayleigh-Taylor instability are presented to validate the new method
Fluctuations of elastic interfaces in fluids: Theory and simulation
We study the dynamics of elastic interfaces-membranes-immersed in thermally
excited fluids. The work contains three components: the development of a
numerical method, a purely theoretical approach, and numerical simulation. In
developing a numerical method, we first discuss the dynamical coupling between
the interface and the surrounding fluids. An argument is then presented that
generalizes the single-relaxation time lattice-Boltzmann method for the
simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of the new method is outlined and it is tested by
simulating the static behavior of spherical bubbles and the dynamics of bending
waves. By means of the fluctuation-dissipation theorem we recover analytically
the equilibrium frequency power spectrum of thermally fluctuating membranes and
the correlation function of the excitations. Also, the non-equilibrium scaling
properties of the membrane roughening are deduced, leading us to formulate a
scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where
W, L and T are the width of the interface, the linear size of the system and
the temperature respectively, and g is a scaling function. Finally, the
phenomenology of thermally fluctuating membranes is simulated and the frequency
power spectrum is recovered, confirming the decay of the correlation function
of the fluctuations. As a further numerical study of fluctuating elastic
interfaces, the non-equilibrium regime is reproduced by initializing the system
as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique
The theoretical results regarding the ``transition frequencies'' of two
acoustically interacting bubbles have been verified numerically. The theory
provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three
transition frequencies per bubble, each of which has the phase difference of
between a bubble's pulsation and the external sound field, while
previous theories predicted only two natural frequencies which cause such phase
shifts. Namely, two of the three transition frequencies correspond to the
natural frequencies, while the remaining does not. In a subsequent paper [M.
Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition
frequencies other than the natural frequencies may cause the sign reversal of
the secondary Bjerknes force acting between pulsating bubbles. In the present
study, we employ a direct numerical simulation technique that uses the
compressible Navier-Stokes equations with a surface-tension term as the
governing equations to investigate the transition frequencies of two coupled
bubbles by observing their pulsation amplitudes and directions of translational
motion, both of which change as the driving frequency changes. The numerical
results reproduce the recent theoretical predictions, validating the existence
of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres
An edge-based interface tracking (EBIT) method for multiphase-flow simulation with surface tension
We present a novel Front -Tracking method, the Edge -Based Interface Tracking (EBIT) method for multiphase flow simulations. In the EBIT method, the markers are located on the grid edges and the interface can be reconstructed without storing the connectivity of the markers. This feature makes the process of marker addition or removal easier than in the traditional Front -Tracking method. The EBIT method also allows almost automatic parallelization due to the lack of explicit connectivity. In a previous journal article we have presented the kinematic part of the EBIT method, that includes the algorithms for piecewise linear reconstruction and advection of the interface. Here, we complete the presentation of the EBIT method and combine the kinematic algorithm with a Navier-Stokes solver. A circle fit is now implemented to improve the accuracy of mass conservation in the reconstruction phase. Furthermore, to identify the reference phase and to distinguish ambiguous topological configurations, we introduce a new feature: the Color Vertex. For the coupling with the Navier-Stokes equations, we first calculate volume fractions from the position of the markers and the Color Vertex, then viscosity and density fields from the computed volume fractions and finally surface tension stresses with the Height -Function method. In addition, an automatic topology change algorithm is implemented into the EBIT method, making it possible the simulation of more complex flows. The two-dimensional version of the EBIT method has been implemented in the free Basilisk platform, and validated with seven standard test cases: stagnation flow, translation with uniform velocity, single vortex, Zalesak's disk, capillary wave, Rayleigh -Taylor instability and rising bubble. The results are compared with those obtained with the Volume -of -Fluid (VOF) method already implemented in Basilisk
Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects
This work studies the breakup of finite-size liquid filaments, when also
including substrate effects, using direct numerical simulations. The study
focuses on the effects of three parameters: Ohnesorge number, the ratio of the
viscous forces to inertial and surface tension forces, the liquid filament
aspect ratio, and where there is a substrate, a measure of the fluid slip on
the substrate, i.e. slip length. Through these parameters, it is determined
whether a liquid filament breaks up during the evolution toward its final
equilibrium state. Three scenarios are identified: a collapse into a single
droplet, the breakup into one or multiple droplets, and recoalescence into a
single droplet after the breakup (or even possibly another breakup after
recoalescence). The results are compared with the ones available in the
literature for free-standing liquid filaments. The findings show that the
presence of the substrate promotes breakup of the filament. The effect of the
degree of slip on the breakup is also discussed. The parameter domain regions
are comprehensively explored when including the slip effects. An experimental
case is also carried out to illustrate the collapse and breakup of a
finite-size silicon oil filament supported on a substrate, showcasing a
critical length of the breakup in a physical configuration. Finally, direct
numerical simulations reveal striking new details into the breakup pattern for
low Ohnesorge numbers, where the dynamics are fast and the experimental imaging
is not available; our results therefore significantly extend the range of
Ohnesorge number over which filament breakup has been considered
- …
