1,983 research outputs found

    ac-driven atomic quantum motor

    Full text link
    We invent an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the asymptotic carrier velocity converges to a unique non-zero value. We also demonstrate that this quantum motor performs work against a constant load.Comment: 4 pages, 4 figure

    Mapping the Arnold web with a GPU-supercomputer

    Full text link
    The Arnold diffusion constitutes a dynamical phenomenon which may occur in the phase space of a non-integrable Hamiltonian system whenever the number of the system degrees of freedom is Mβ‰₯3M \geq 3. The diffusion is mediated by a web-like structure of resonance channels, which penetrates the phase space and allows the system to explore the whole energy shell. The Arnold diffusion is a slow process; consequently the mapping of the web presents a very time-consuming task. We demonstrate that the exploration of the Arnold web by use of a graphic processing unit (GPU)-supercomputer can result in distinct speedups of two orders of magnitude as compared to standard CPU-based simulations.Comment: 7 pages, 4 figures, a video supplementary provided at http://www.physik.uni-augsburg.de/~seiberar/arnold/Energy15_HD_frontNback.av

    Double giant resonances in deformed nuclei

    Full text link
    We report on the first microscopic study of the properties of two-phonon giant resonances in deformed nuclei. The cross sections of the excitation of the giant dipole and the double giant dipole resonances in relativistic heavy ion collisions are calculated. We predict that the double giant dipole resonance has a one-bump structure with a centroid 0.8 MeV higher than twice energy for the single giant dipole resonance in the reaction under consideration. The width of the double resonance equals to 1.33 of that for the single resonance.Comment: 5 pages, 2 postscript figure

    On some characterizations of quasiregularity

    Get PDF

    Mathematical model of composite fibre-glass aramide-wired cord rheological properties

    Get PDF
    This paper describes the rheological properties of composite fibre-glass aramide-wired cords which, in its turn, are applied in large-sized structures for space systems. Based on experimental data a new mathematical model describing creeping and relaxation of composite cords is proposed. This model defines the operation time of the composite cords to be 15 years

    Calculation method for cable-beam shell structures

    Get PDF
    This paper presents a calculation method suitable for cable-beam shell structures. It is based on both nonlinear finite element and force density methods. The main idea is to define the solution sequence for stress - strain state problem of above mentioned structures by nonlinear finite element method. Every successive solution involves the previous one as an initial estimate in convergent domain. To find an initial estimate for the first solution a force density method is used. The proposed method is tested on a new large space umbrella reflector
    • …
    corecore