18 research outputs found

    Short-Term Prognostic Index for Breast Cancer: NPI or Lpi

    Get PDF
    Axillary lymph node involvement is an important prognostic factor for breast cancer survival but is confounded by the number of nodes examined. We compare the performance of the log odds prognostic index (Lpi), using a ratio of the positive versus negative lymph nodes, with the Nottingham Prognostic Index (NPI) for short-term breast cancer specific disease free survival. A total of 1818 operable breast cancer patients treated in the University Hospital of Leuven between 2000 and 2005 were included. The performance of the NPI and Lpi were compared on two levels: calibration and discrimination. The latter was evaluated using the concordance index (cindex), the number of patients in the extreme groups, and difference in event rates between these. The NPI had a significant higher cindex, but a significant lower percentage of patients in the extreme risk groups. After updating both indices, no significant differences between NPI and Lpi were noted

    The Possible Role of Staphylococcus epidermidis LPxTG Surface Protein SesC in Biofilm Formation

    No full text
    Staphylococcus epidermidis is the most common cause of device-associated infections. It has been shown that active and passive immunization in an animal model against protein SesC significantly reduces S. epidermidis biofilm-associated infections. In order to elucidate its role, knock-out of sesC or isolation of S. epidermidis sesC-negative mutants were attempted, however, without success. As an alternative strategy, sesC was introduced into Staphylococcus aureus 8325-4 and its isogenic icaADBC and srtA mutants, into the clinical methicillin-sensitive S. aureus isolate MSSA4 and the MRSA S. aureus isolate BH1CC, which all lack sesC. Transformation of these strains with sesC i) changed the biofilm phenotype of strains 8325-4 and MSSA4 from PIA-dependent to proteinaceous even though PIA synthesis was not affected, ii) converted the non-biofilm-forming strain 8325-4 ica::tet to a proteinaceous biofilm-forming strain, iii) impaired PIA-dependent biofilm formation by 8325-4 srtA::tet, iv) had no impact on protein-mediated biofilm formation of BH1CC and v) increased in vivo catheter and organ colonization by strain 8325-4. Furthermore, treatment with anti-SesC antibodies significantly reduced in vitro biofilm formation and in vivo colonization by these transformants expressing sesC. These findings strongly suggest that SesC is involved in S. epidermidis attachment to and subsequent biofilm formation on a substrate
    corecore