197 research outputs found

    Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    Get PDF
    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration

    Sixfold fermion near the Fermi level in cubic PtBi2

    Get PDF
    We show that the cubic compound PtBi2, is a topological semimetal hosting a sixfold band touching point in close proximity to the Fermi level. Using angle-resolved photoemission spectroscopy, we map the bandstructure of the system, which is in good agreement with results from density functional theory. Further, by employing a low energy effective Hamiltonian valid close to the crossing point, we study the effect of a magnetic field on the sixfold fermion. The latter splits into a total of twenty Weyl cones for a Zeeman field oriented in the diagonal, [111] direction. Our results mark cubic PtBi2, as an ideal candidate to study the transport properties of gapless topological systems beyond Dirac and Weyl semimetals.Comment: 15 pages, 6 figures; this is the final, published versio

    Determination of the basic parameters of the dwarf nova EY Cygni

    Get PDF
    High-dispersion spectroscopy of EY Cyg obtained from data spanning twelve years show, for the first time, the radial velocity curves from both emission and absorption line systems, yielding semi-amplitudes K_{em}=24+/- 4 km s^-1 and K_{abs}=54+/- 2 km s^-1. The orbital period of this system is found to be 0.4593249(1)d. The masses of the stars, their mass ratio and their separation are found to be M_1 sin^3 i = 0.015+/-0.002 M_sun, M_2 sin^3 i = 0.007+/-0.002 M_sun, q = K_1/K_2 = M_2/M_1 = 0.44+/-0.02 and a sin i = 0.71+/-0.04 R_sun. We also found that the spectral type of the secondary star is around K0,consistent with an early determination by Kraft(1962). From the spectral type of the secondary star and simple comparisons with single main sequence stars, we conclude that the radius of the secondary star is about 30 per cent larger than a main sequence star of the same mass. We also present VRI CCD photometric observations, some of them simultaneous with the spectroscopic runs. The photometric data shows several light modulations, including a sinusoidal behaviour with twice the frequency of the orbital period, characteristic of the modulation coming from an elongated, irradiated secondary star. Low and high states during quiescence are also detected and discussed. From several constrains, we obtain tight limits for the inclination angle of the binary system between 13 and 15 degrees, with a best value of 14 degrees obtained from the sinusoidal light curve analysis. From the above results we derive masses M_1 = 1.10+/-0.09 M_sun, M_2 = 0.49+/-0.09 M_sun, and a binary separation a = 2.9+/- 0.1 R_sun.Comment: 14 pages, 14 figures, accepted for publication on A&

    Comparing nuclear power trajectories in Germany and the UK: from ‘regimes' to ‘democracies’ in sociotechnical transitions and Discontinuities

    Get PDF
    This paper focuses on arguably the single most striking contrast in contemporary major energy politics in Europe (and even the developed world as a whole): the starkly differing civil nuclear policies of Germany and the UK. Germany is seeking entirely to phase out nuclear power by 2022. Yet the UK advocates a ‘nuclear renaissance’, promoting the most ambitious new nuclear construction programme in Western Europe.Here,this paper poses a simple yet quite fundamental question: what are the particular divergent conditions most strongly implicated in the contrasting developments in these two countries. With nuclear playing such an iconic role in historical discussions over technological continuity and transformation, answering this may assist in wider understandings of sociotechnical incumbency and discontinuity in the burgeoning field of‘sustainability transitions’. To this end, an ‘abductive’ approach is taken: deploying nine potentially relevant criteria for understanding the different directions pursued in Germany and the UK. Together constituted by 30 parameters spanning literatures related to socio-technical regimes in general as well as nuclear technology in particular, the criteria are divided into those that are ‘internal’ and ‘external’ to the ‘focal regime configuration’ of nuclear power and associated ‘challenger technologies’ like renewables. It is ‘internal’ criteria that are emphasised in conventional sociotechnical regime theory, with ‘external’ criteria relatively less well explored. Asking under each criterion whether attempted discontinuation of nuclear power would be more likely in Germany or the UK, a clear picture emerges. ‘Internal’ criteria suggest attempted nuclear discontinuation should be more likely in the UK than in Germany– the reverse of what is occurring. ‘External’ criteria are more aligned with observed dynamics –especially those relating to military nuclear commitments and broader ‘qualities of democracy’. Despite many differences of framing concerning exactly what constitutes ‘democracy’, a rich political science literature on this point is unanimous in characterising Germany more positively than the UK. Although based only on a single case,a potentially important question is nonetheless raised as to whether sociotechnical regime theory might usefully give greater attention to the general importance of various aspects of democracy in constituting conditions for significant technological discontinuities and transformations. If so, the policy implications are significant. A number of important areas are identified for future research, including the roles of diverse understandings and specific aspects of democracy and the particular relevance of military nuclear commitments– whose under-discussion in civil nuclear policy literatures raises its own questions of democratic accountability
    corecore