458 research outputs found

    Entanglement of mixed macroscopic superpositions: an entangling-power study

    Get PDF
    We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.Comment: 9 pages, 7 figures, RevTeX

    Towards variance-matrix characterization of complementarity relations in a continuous variable system

    Full text link
    We discuss complementarity relations in a bipartite continuous variable system. Building up from the work done on discrete d-dimensional systems, we prove that for symmetric two-mode states, quantum complementarity relations can be put in a simple relation with the elements of the variance matrix. When this condition is not satisfied, such a connection becomes non-trivial. Our investigation is the first step towards an operative characterization of the complementarity in a scenario that has not been investigated so far.Comment: 7 pages, 4 figures, RevTeX

    A dissipative scheme to approach the boundary of two-qubit entangled mixed states

    Full text link
    We discuss the generation of states close to the boundary-family of maximally entangled mixed states as defined by the use of concurrence and linear entropy. The coupling of two qubits to a dissipation-affected bosonic mode is able to produce a bipartite state having, for all practical purposes, the entanglement and purity properties of one of such boundary states. We thoroughly study the effects that thermal and squeezed character of the bosonic mode have in such a process and we discuss tolerance to qubit phase-damping mechanisms. The non-demanding nature of the scheme makes it realizable in a matter-light based physical set-up, which we address in some details.Comment: 9 pages, 7 figures, RevTeX4, Accepted for publication by Physics Review

    Enhanced dynamical entanglement transfer with multiple qubits

    Full text link
    We present two strategies to enhance the dynamical entanglement transfer from continuous variable (CV) to finite dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system is sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between microscopic and macroscopic behaviours of composite finite dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing to probabilistically convert CV entanglement into `almost perfect' Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.Comment: 10 pages, 8 figures, RevTeX4; terminology revised; accepted for publicatio

    Controllable Gaussian-qubit interface for extremal quantum state engineering

    Full text link
    We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.Comment: 4+3 pages, 6 figures, RevTeX4. Close to published version with appendi

    Bypassing state initialization in Hamiltonian tomography on spin-chains

    Full text link
    We provide an extensive discussion on a scheme for Hamiltonian tomography of a spin-chain model that does not require state initialization [Phys. Rev. Lett. 102, 187203 (2009)]. The method has spurred the attention of the physics community interested in indirect acquisition of information on the dynamics of quantum many-body systems and represents a genuine instance of a control-limited quantum protocol.Comment: 7 pages, 2 figures, RevTeX

    Information-flux approach to multiple-spin dynamics

    Full text link
    We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to non-unitary dynamics.Comment: 7 pages, 4 figures, RevTeX
    • …
    corecore