23 research outputs found

    Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5N

    Get PDF
    This is the accepted manuscript. An edited version of this paper was published by AGU. Copyright 2014 American Geophysical Union.A multifaceted study of the slow-spreading Mid-Atlantic Ridge (MAR) at 16.5ºN provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ~50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, non-corrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal one other detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multi-scale corrugations are observed 2-3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6º) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low-angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust > 2 Ma indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.This work was supported by the National Science Foundation grant number OCE-1155650

    Lasers and optics: Looking towards third generation gravitational wave detectors

    Get PDF
    Third generation terrestrial interferometric gravitational wave detectors will likely require significant advances in laser and optical technologies to reduce two of the main limiting noise sources: thermal noise due to mirror coatings and quantum noise arising from a combination of shot noise and radiation pressure noise. Increases in laser power and possible changes of the operational wavelength require new high power laser sources and new electro-optic modulators and Faraday isolators. Squeezed light can be used to further reduce the quantum noise while nano-structured optical components can be used to reduce or eliminate mirror coating thermal noise as well as to implement all-reflective interferometer configurations to avoid thermal effects in mirror substrates. This paper is intended to give an overview on the current state-of-the-art and future trends in these areas of ongoing research and development.NSF/PHY0555453NSF/PHY0757968NSF/PHY0653582DFG/SFB/407DFG/SFB/TR7DFG/EXC/QUES
    corecore