3,855 research outputs found

    Superconductivity in a spin liquid - a one dimensional example

    Full text link
    We study a one-dimensional model of interacting conduction electrons with a two-fold degenerate band away from half filling. The interaction includes an on-site Coulomb repulsion and Hund's rule coupling. We show that such one-dimensional system has a divergent Cooper pair susceptibility at T = 0, provided the Coulomb interaction UU between electrons on the same orbital and the modulus of the Hund's exchange integral J|J| are larger than the interorbital Coulomb interaction. It is remarkable that the superconductivity can be achieved for {\it any} sign of JJ. The opening of spectral gaps makes this state stable with respect to direct electron hopping between the orbitals. The scaling dimension of the superconducting order parameter is found to be between 1/4 (small UU) and 1/2 (large UU).Comment: 11 pages, Latex, no figure

    Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion

    Get PDF
    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern’ G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages

    One-dimensional spin-liquid without magnon excitations

    Full text link
    It is shown that a sufficiently strong four-spin interaction in the spin-1/2 spin ladder can cause dimerization. Such interaction can be generated either by phonons or (in the doped state) by the conventional Coulomb repulsion between the holes. The dimerized phases are thermodynamically undistinguishable from the Haldane phase, but have dramatically different correlation functions: the dynamical magnetic susceptibility, instead of displaying a sharp single magnon peak near q=πq = \pi, shows only a two-particle threshold separated from the ground state by a gap.Comment: 9 pages, LaTex, to be published in Phys. Rev. Lett., vol. 78, May 199

    D-Terms from Generalized NS-NS Fluxes in Type II

    Full text link
    Orientifolds of type II string theory admit a certain set of generalized NS-NS fluxes, including not only the three-form field strength H, but also metric and non-geometric fluxes, which are related to H by T-duality. We describe in general how these fluxes appear as parameters of an effective N=1 supergravity theory in four dimensions, and in particular how certain generalized NS-NS fluxes can act as charges for R-R axions, leading to D-term contributions to the effective scalar potential. We illustrate these phenomena in type IIB with the example of a certain orientifold of T^6/Z_4.Comment: 31+1 pages, uses utarticle.cls; v2: references adde

    Bound states of magnons in the S=1/2 quantum spin ladder

    Full text link
    We study the excitation spectrum of the two-leg antiferromagnetic S=1/2 Heisenberg ladder. Our approach is based on the description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. We find singlet (S=0) and triplet (S=1) two-particle bound states of the elementary triplets. We argue that bound states generally exist in any dimerized quantum spin model.Comment: 4 REVTeX pages, 4 Postscript figure

    Oil Spill Occurrences along Indian Exclusive Economic Zone

    Get PDF
    Oil Spill Occurrences along Indian Exclusive Economic Zon

    Effective descriptions of branes on non-geometric tori

    Get PDF
    We investigate the low-energy effective description of non-geometric compactifications constructed by T-dualizing two or three of the directions of a T^3 with non-vanishing H-flux. Our approach is to introduce a D3-brane in these geometries and to take an appropriate decoupling limit. In the case of two T-dualities, we find at low energies a non-commutative T^2 fibered non-trivially over an S^1. In the UV this theory is still decoupled from gravity, but is dual to a little string theory with flavor. For the case of three T-dualities, we do not find a sensible decoupling limit, casting doubt on this geometry as a low-energy effective notion in critical string theory. However, by studying a topological toy model in this background, we find a non-associative geometry similar to one found by Bouwknegt, Hannabuss, and Mathai.Comment: 22 pages, 4 figures, references adde

    Generalized Flux Vacua

    Get PDF
    We consider type II string theory compactified on a symmetric T^6/Z_2 orientifold. We study a general class of discrete deformations of the resulting four-dimensional supergravity theory, including gaugings arising from geometric and "nongeometric'' fluxes, as well as the usual R-R and NS-NS fluxes. Solving the equations of motion associated with the resulting N = 1 superpotential, we find parametrically controllable infinite families of supersymmetric vacua with all moduli stabilized. We also describe some aspects of the distribution of generic solutions to the SUSY equations of motion for this model, and note in particular the existence of an apparently infinite number of solutions in a finite range of the parameter space of the four-dimensional effective theory.Comment: 30 pages, 4 .eps figures; v2, reference adde
    corecore