4,151 research outputs found

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Measurement of teicoplanin by liquid chromatography-tandem mass spectrometry:development of a novel method

    Get PDF
    Teicoplanin is an antibiotic used for the treatment of endocarditis, osteomyelitis, septic arthritis and methicillin-resistant Staphylococcus aureus. Teicoplanin is emerging as a suitable alternative antibiotic to vancomycin, where their trough serum levels are monitored by immunoassay routinely. This is the first report detailing the development of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring teicoplanin in patients' serum

    Storing and processing optical information with ultra-slow light in Bose-Einstein condensates

    Full text link
    We theoretically explore coherent information transfer between ultra-slow light pulses and Bose-Einstein condensates (BECs) and find that storing light pulses in BECs, by switching off the coupling field, allows the coherent condensate dynamics to process optical information. We develop a formalism, applicable in both the weak and strong probe regimes, to analyze such experiments and establish several new results. Investigating examples relevant to Rb-87 experimental parameters we see a variety of novel two-component BEC dynamics occur during the storage, including interference fringes, gentle breathing excitations, and two-component solitons. We find the dynamics when the levels |F=1, M_F=-1> and |F=2, M_F=+1> are well suited to designing controlled processing of the information. By switching the coupling field back on, the processed information is rewritten onto probe pulses which then propagate out as slow light pulses. We calculate the fidelity of information transfer between the atomic and light fields upon the switch-on and subsequent output. The fidelity is affected both by absorption of small length scale features and absorption of regions of the pulse stored near the condensate edge. In the strong probe case, we find that when the oscillator strengths for the two transitions are equal the fidelity is not strongly sensitive to the probe strength, while when they are unequal the fidelity is worse for stronger probes. Applications to distant communication between BECs, squeezed light generation and quantum information are anticipated.Comment: 19 pages, 12 figures, submitted to Phys. Rev.
    • 

    corecore