3,240 research outputs found

    Algebraic treatment of the confluent Natanzon potentials

    Full text link
    Using the so(2,1) Lie algebra and the Baker, Campbell and Hausdorff formulas, the Green's function for the class of the confluent Natanzon potentials is constructed straightforwardly. The bound-state energy spectrum is then determined. Eventually, the three-dimensional harmonic potential, the three-dimensional Coulomb potential and the Morse potential may all be considered as particular cases.Comment: 9 page

    Probing ferroelectricity in highly conducting materials through their elastic response: persistence of ferroelectricity in metallic BaTiO3-d

    Full text link
    The question whether ferroelectricity (FE) may coexist with a metallic or highly conducting state, or rather it must be suppressed by the screening from the free charges, is the focus of a rapidly increasing number of theoretical studies and is finally receiving positive experimental responses. The issue is closely related to the thermoelectric and multiferroic (also magnetic) applications of FE materials, where the electrical conductivity is required or spurious. In these circumstances, the traditional methods for probing ferroelectricity are hampered or made totally ineffective by the free charges, which screen the polar response to an external electric field. This fact may explain why more than 40 years passed between the first proposals of FE metals and the present experimental and theoretical activity. The measurement of the elastic moduli, Young's modulus in the present case, versus temperature is an effective method for studying the influence of doping on a FE transition because the elastic properties are unaffected by electrical conductivity. In this manner, it is shown that the FE transitions of BaTiO3-d are not suppressed by electron doping through O vacancies; only the onset temperatures are depressed, but the magnitudes of the softenings, and hence of the piezoelectric activity, are initially even increased

    Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets

    Full text link
    We study a liquid jet that breaks up into drops in an external co-flowing liquid inside a confining microfluidic geometry. The jet breakup can occur right after the nozzle in a phenomenon named dripping or through the generation of a liquid jet that breaks up a long distance from the nozzle, which is called jetting. Traditionally, these two regimes have been considered to reflect the existence of two kinds of spatiotemporal instabilities of a fluid jet, the dripping regime corresponding to an absolutely unstable jet and the jetting regime to a convectively unstable jet. Here, we present quantitative measurements of the dripping and jetting regimes, both in an unforced and a forced state, and compare these measurements with recent theoretical studies of spatiotemporal instability of a confined liquid jet in a co-flowing liquid. In the unforced state, the frequency of oscillation and breakup of the liquid jet is measured and compared to the theoretical predictions. The dominant frequency of the jet oscillations as a function of the inner flow rate agrees qualitatively with the theoretical predictions in the jetting regime but not in the dripping regime. In the forced state, achieved with periodic laser heating, the dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. The jetting regime, on the contrary, amplifies the externally imposed frequency, which translates in the formation of drops at the frequency imposed by the external forcing. In conclusion, the dripping and jetting regimes are found to exhibit the main features of absolutely and convectively unstable flows respectively, but the frequency selection in the dripping regime is not ruled by the absolute frequency predicted by the stability analysis.Comment: 10 pages, 12 figures, to appear in Physics of Fluid

    Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three

    Full text link
    We determine, for all three-dimensional non-unimodular Lie groups equipped with a Lorentzian metric, the set of homogeneous geodesics through a point. Together with the results of [C] and [CM2], this leads to the full classification of three-dimensional Lorentzian g.o. spaces and naturally reductive spaces

    Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements

    Full text link
    The complex elastic compliance and dielectric susceptibility of (Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the composition range between pure NBT and the morphotropic phase boundary included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the determination of the tetragonal region of the phase diagram, up to now impossible due to the strong lattice disorder and small distortions and polarizations involved. In spite of ample evidence of disorder and structural heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C transition merges into the diffuse and relaxor-like transition associated with broad maxima of the dielectric and elastic susceptibilities. An attempt is made at relating the different features in the anelastic and dielectric curves to different modes of octahedral rotations and polar cation shifts. The possibility is also considered that the cation displacements locally have monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Identifying short motifs by means of extreme value analysis

    Full text link
    The problem of detecting a binding site -- a substring of DNA where transcription factors attach -- on a long DNA sequence requires the recognition of a small pattern in a large background. For short binding sites, the matching probability can display large fluctuations from one putative binding site to another. Here we use a self-consistent statistical procedure that accounts correctly for the large deviations of the matching probability to predict the location of short binding sites. We apply it in two distinct situations: (a) the detection of the binding sites for three specific transcription factors on a set of 134 estrogen-regulated genes; (b) the identification, in a set of 138 possible transcription factors, of the ones binding a specific set of nine genes. In both instances, experimental findings are reproduced (when available) and the number of false positives is significantly reduced with respect to the other methods commonly employed.Comment: 6 pages, 5 figure

    A mutate-and-map protocol for inferring base pairs in structured RNA

    Full text link
    Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule's reactivity to different probes is quantified at single-nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput read-outs, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base-paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecules contact map. Here, we give our in-house protocol for this mutate-and-map strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.Comment: 22 pages, 5 figure

    A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators

    Full text link
    This chapter offers a detailed survey on intrinsically localized frames and the corresponding matrix representation of operators. We re-investigate the properties of localized frames and the associated Banach spaces in full detail. We investigate the representation of operators using localized frames in a Galerkin-type scheme. We show how the boundedness and the invertibility of matrices and operators are linked and give some sufficient and necessary conditions for the boundedness of operators between the associated Banach spaces.Comment: 32 page

    Satellite potentials for hypergeometric Natanzon potentials

    Get PDF
    As a result of the so(2,1) of the hypergeometric Natanzon potential a set of potentials related to the given one is determined. The set arises as a result of the action of the so(2,1) generators.Comment: 9 page

    Linear perturbations of the Wigner transform and the Weyl quantization

    Get PDF
    We study a class of quadratic time-frequency representations that, roughly speaking, are obtained by linear perturbations of the Wigner transform. They satisfy Moyal's formula by default and share many other properties with the Wigner transform, but in general they do not belong to Cohen's class. We provide a characterization of the intersection of the two classes. To any such time-frequency representation, we associate a pseudodifferential calculus. We investigate the related quantization procedure, study the properties of the pseudodifferential operators, and compare the formalism with that of the Weyl calculus.Comment: 38 pages. Contributed chapter for volume on the occasion of Luigi Rodino's 70th birthda
    • …
    corecore