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LINEAR PERTURBATIONS OF THE WIGNER TRANSFORM
AND THE WEYL QUANTIZATION

DOMINIK BAYER, ELENA CORDERO, KARLHEINZ GRÖCHENIG, AND S. IVAN
TRAPASSO

Abstract. We study a class of quadratic time-frequency representations
that, roughly speaking, are obtained by linear perturbations of the Wigner
transform. They satisfy Moyal’s formula by default and share many other
properties with the Wigner transform, but in general they do not belong
to Cohen’s class. We provide a characterization of the intersection of
the two classes. To any such time-frequency representation, we associate
a pseudodifferential calculus. We investigate the related quantization
procedure, study the properties of the pseudodifferential operators, and
compare the formalism with that of the Weyl calculus.

This is an Accepted Manuscript of an article published by Birkhäuser as a
chapter of the book Advances in Microlocal and Time-Frequency Analysis
(Applied and Numerical Harmonic Analysis series) on 4 March 2020,
available at:
https://link.springer.com/chapter/10.1007/978-3-030-36138-9_5,
DOI: 10.1007/978-3-030-36138-9_5 .

1. Introduction

The Wigner transform is a key concept lying at the heart of pseudodif-
ferential operator theory and time-frequency analysis. It was introduced
by Wigner [43] as a quasi-probability distribution in order to extend the
phase-space formalism of classical statistical mechanics to the domain of
quantum physics. Subsequently, this line of thought led to the phase-space
formulation of quantum mechanics. In engineering, the Wigner transform
was considered the ideal tool for the simultaneous investigation of temporal
and spectral features of signals, because it enjoys all properties desired from
a good time-frequency representation (except for positivity) [39].

2010 Mathematics Subject Classification. 42A38,42B35,46F10,46F12,81S30.
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To be precise, the (cross-)Wigner distribution of two signals 𝑓 , 𝑔 ∈
𝐿2(R𝑑) is defined as

(1) 𝑊 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝑦·𝜔 𝑓

(
𝑥 + 𝑦

2

)
𝑔

(
𝑥 − 𝑦

2

)
𝑑𝑦 .

If 𝑓 = 𝑔 we write 𝑊 𝑓 (𝑥, 𝜔). This is an example of a quadratic time-
frequency representation, and heuristically 𝑊 𝑓 (𝑥, 𝜔) is interpreted as a
measure of the energy content of the signal 𝑓 in a “tight” spectral band
around 𝜔 during a “short” time interval near 𝑥.

The Wigner transform plays a key role in the Weyl quantization and
the corresponding pseudodifferential calculus. Quantization is a formal-
ism that associates a function on phase space (an observable) with an op-
erator on a Hilbert space. The standard quantization rule in physics is
the Weyl correspondence: given the phase-space observable 𝜎 ∈ S′(R2𝑑)
(called symbol in mathematical language) the corresponding Weyl transform
opW(𝜎) : S(R𝑑) → S′(R𝑑) is (formally) defined by

(2) opW(𝜎) 𝑓 (𝑥) =
∫
R2𝑑

𝑒2𝜋𝑖(𝑥−𝑦)·𝜔𝜎
(𝑥 + 𝑦

2
, 𝜔

)
𝑓 (𝑦)𝑑𝑦𝑑𝜔.

A formal computation reveals the role of the Wigner transform in this
definition, because

(3) ⟨opW(𝜎) 𝑓 , 𝑔⟩ = ⟨𝜎,𝑊 (𝑔, 𝑓 )⟩, 𝑓 , 𝑔 ∈ S(R𝑑).

Whereas the rigorous interpretation of (2) is subtle and requires oscillatory
integrals, the weak formulation (3) is easy to handle and works without prob-
lems for distributional symbols 𝜎. The bracket ⟨ 𝑓 , 𝑔⟩ denote the extension
to S′(R𝑑) × S(R𝑑) of the inner product on 𝐿2(R𝑑).

Unfortunately, not all properties which are desired from a time-frequency
representation are compatible. The Wigner transform is real-valued, but it
may take negative values. This is a serious obstruction to the interpretation
of the Wigner transform as a probability distribution or as an energy density
of a signal. By Hudson’s theorem [34] only generalized Gaussian functions
have positive Wigner transforms.

To obtain time-frequency representations that are positive for all functions,
one takes local averages of the Wigner transform in order to tame the sign
oscillations. This is usually done by convolving 𝑊 𝑓 with a suitable kernel
\. This idea yields a class of quadratic time-frequency representations,
which is called Cohen’s class [8]. The time-frequency representations in
Cohen’s class are parametrized by a kernel \ ∈ S′(R2𝑑), and the associated
representation is defined as

(4) 𝑄\ ( 𝑓 , 𝑔) B 𝑊 ( 𝑓 , 𝑔) ∗ \, 𝑓 , 𝑔 ∈ S(R𝑑).
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Most time-frequency representations proposed so far belong to Cohen’s
class [7, 33], and the correspondence between properties of \ and 𝑄\ is well
understood [33, ?]. In many examples𝑄\ can be interpreted as a perturbation
of the Wigner distribution, while retaining some of its important properties.
Thus Cohen’s class provides a unifying framework for the study of time-
frequency representations appearing in signal processing. See for instance
[7, 9, 33, 32].

Next, for every time-frequency representation in Cohen’s class one can
introduce a quantization rule in analogy to the Weyl quantization (3), namely,

(5) ⟨op\ (𝜎) 𝑓 , 𝑔⟩ = ⟨𝜎,𝑄\ (𝑔, 𝑓 )⟩ = ⟨𝜎 ∗ \∗,𝑊 (𝑔, 𝑓 )⟩, 𝑓 , 𝑔 ∈ S(R𝑑) ,

whenever the expressions make sense. Although the new operator op\ (𝜎)
is just a Weyl operator with the modified symbol 𝜎 ∗ \∗ (whenever defined
in S′(R𝑑)), the variety of pseudodifferential calculi given by definition (5)
adds flexibility and a new flavor to the description and analysis of operators.

For example, a first variation of the Wigner transform are the 𝜏-Wigner
transforms
(6)
𝑊𝜏 ( 𝑓 , 𝑔) (𝑥, 𝜔) =

∫
R𝑑

𝑒−2𝜋𝑖𝑦·𝜔 𝑓 (𝑥+𝜏𝑦)𝑔(𝑥 − (1 − 𝜏)𝑦) 𝑑𝑦, 𝑓 , 𝑔 ∈ S(R𝑑) .

These belong to Cohen’s class and possess the kernel \𝜏 ∈ S(R2𝑑) with
Fourier transform

(7) \̂𝜏 (b, [) = 𝑒−2𝜋𝑖(𝜏− 1
2 )b ·[, (b, [) ∈ R2𝑑 .

The corresponding pseudodifferential calculi are the Shubin 𝜏-pseudodifferential
operators op\𝜏 (𝜎) in formula (5). For the parameter 𝜏 = 1/2 this is the Weyl
calculus, for 𝜏 = 0 this is the Kohn-Nirenberg calculus. The important Born-
Jordan quantization rule is obtained as an average over 𝜏 ∈ [0, 1], see [5] or
the textbook [18].

From (7) we see that the deviation from the Wigner transform is measured
by ` = 𝜏− 1/2. Hence a natural generalization of the 𝜏-Wigner transform is
the replacement of the scalar parameter ` with a matrix expression 𝑀 = 𝑇 −
(1/2)𝐼, with𝑇 ∈ R𝑑×𝑑 . This gives the family of matrix-Wigner distributions
(8)

𝑊𝑀 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝑦·𝜔 𝑓

(
𝑥 +

(
𝑀 + 1

2
𝐼

)
𝑦

)
𝑔

(
𝑥 +

(
𝑀 − 1

2
𝐼

)
𝑦

)
𝑑𝑦 .

Again these are members of the Cohen class in (4) with a kernel \𝑀 given
by its Fourier transform

(9) \̂𝑀 (b, [) = 𝑒−2𝜋𝑖b ·𝑀[ .
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An even more general definition in the spirit of (8) uses an arbitrary linear

mapping of the pair (𝑥, 𝑦) ∈ R2𝑑 . Let 𝐴 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
be an invertible,

real-valued 2𝑑 × 2𝑑-matrix. We define the matrix-Wigner transform B𝐴 of
two functions 𝑓 , 𝑔 by

(10) B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝑦·𝜔 𝑓 (𝐴11𝑥 + 𝐴12𝑦) 𝑔 (𝐴21𝑥 + 𝐴22𝑦)𝑑𝑦 .

Clearly, 𝑊𝑀 in (8) is a special case by choosing

(11) 𝐴 = 𝐴𝑀 =

(
𝐼 𝑀 + (1/2)𝐼
𝐼 𝑀 − (1/2)𝐼

)
.

Once again, every matrix Wigner transform B𝐴 is associated with a
pseudodifferential calculus or a quantization rule. Given an invertible 2𝑑×2𝑑
-matrix 𝐴 and a symbol 𝜎 ∈ S′(R2𝑑), we define the operator 𝜎𝐴 by

(12)
〈
𝜎𝐴 𝑓 , 𝑔

〉
≡ ⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩ , 𝑓 , 𝑔 ∈ S(R𝑑) .

This is then a continuous operator from S(R𝑑) to S′(R𝑑) and the mapping
𝜎 → 𝜎𝐴 is a form of quantization similar to the Weyl quantization.

The class of matrix Wigner transforms has already a sizeable history.
To our knowledge they were first introduced in [23] in dimension 𝑑 = 1
for a different purpose, but the original contribution to the subject went by
unnoticed. The first thorough investigation of the matrix Wigner transforms
B𝐴 is contained in the unpublished Ph. D. thesis [1] of the first-named
author who studied the general properties of this class of time-frequency
representations and the associated pseudodifferential operators. Indepen-
dently, [3] introduced and studied these “Wigner representations associated
with linear transformations of the time-frequency plane” in dimension 𝑑 = 1.
In [24] matrix Wigner transforms were used for a signal estimation problem.
Recently, in [42] Toft discusses “matrix parametrized pseudo-differential
calculi on modulation spaces”, which correspond to the time-frequency
representations in (8). Finally, two of us [11] took up and reworked and
streamlined several results of [1] and determined the precise intersection
between matrix Wigner transforms and Cohen’s class.

The goal of this chapter is a systematic survey of the accumulated knowl-
edge about the matrix Wigner transforms and their pseudodifferential calculi.

In the first part (Section 3) we discuss the general properties of the matrix
Wigner transforms.

(i) We state the main formulas for covariance, the behavior with respect
to the Fourier transform, the analog of Moyal’s formulas, and the inversion
formula.
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(ii) It is well-known that, up to normalization, the ambiguity function and
the short-time Fourier transform are just different versions and names for the
Wigner transform. This is no longer true for the matrix Wigner transforms,
so we give precise conditions on the parametrizing matrix 𝐴 so that B𝐴 can
be expressed as a short-time Fourier transform, up to a phase factor and a
change of coordinates.

(iii) Of special importance is the intersection of the class of matrix Wigner
transforms with Cohen’s class. After a partical result in [1], it was proved
in [11] that B𝐴 belongs to Cohen’s class, if and only if 𝐴 =

(
𝐼 𝑀+𝐼/2
𝐼 𝑀−𝐼/2

)
for

some 𝑑 × 𝑑-matrix 𝑀 . Thus in general a matrix Wigner transform does not
belong to Cohen’s class. This fact explains why for certain results we have
to impose assumptions on the parametrizing matrix 𝐴.

(iv) A further item is the boundedness of the bilinear mapping ( 𝑓 , 𝑔) →
B𝐴 ( 𝑓 , 𝑔) on various function spaces. These results are quite useful in the
analysis of the mapping properties of the pseudodifferential operators 𝜎𝐴.

In the second part (Section 4) we study the pseudodifferential calculi
defined by the rule (12).

(i) Based on Feichtinger’s kernel theorem (see Theorem 2.4), we first show
that every “reasonable” operator can be represented as a pseudodifferential
operator 𝜎𝐴. We remark that the map (𝜎, 𝐴) ↦→ 𝜎𝐴 is highly non-injective
and, given two matrices 𝐴 and 𝐵 and two symbols 𝜎, 𝜌, we obtain formulas
characterizing the condition 𝜎𝐴 = 𝜌𝐵.

(ii) A large section is devoted to the mapping properties of the pseudodif-
ferential operator 𝜎𝐴 on various function spaces, in particular on 𝐿𝑝-spaces
and on modulation spaces.

(iii) Finally, we extend the boundedness results for symbols in the Sjös-
trand class to those pseudodifferential operators for which B𝐴 is in Cohen’s
class.

For most results we will include proofs, but we will omit those proofs
that only require a formal computation. We hope that the self-contained
and comprehensive presentation of matrix Wigner distributions and their
pseudodifferential calculi will offer some added value when compared with
the focussed, individual publications.

2. Preliminaries

Notation. We define 𝑡2 = 𝑡 · 𝑡, for 𝑡 ∈ R𝑑 , and 𝑥 · 𝑦 is the scalar
product on R𝑑 . The Schwartz class is denoted by S(R𝑑), the space of
temperate distributions by S′(R𝑑). The brackets ⟨ 𝑓 , 𝑔⟩ denote the extension
to S′(R𝑑) × S(R𝑑) of the inner product ⟨ 𝑓 , 𝑔⟩ =

∫
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡 on 𝐿2(R𝑑).

The conjugate exponent 𝑝′ of 𝑝 ∈ [1,∞] is defined by 1/𝑝 + 1/𝑝′ = 1.



6DOMINIK BAYER, ELENA CORDERO, KARLHEINZ GRÖCHENIG, AND S. IVAN TRAPASSO

The symbol ≲_ means that the underlying inequality holds up to a positive
constant factor 𝐶 = 𝐶 (_) > 0 that depends on the parameter _:

𝑓 ≲ 𝑔 ⇒ ∃𝐶 > 0 : 𝑓 ≤ 𝐶𝑔.

If 𝑓 ≲ 𝑔 and 𝑔 ≲ 𝑓 we write 𝑓 ≍ 𝑔.
The Fourier transform of a function 𝑓 ∈ S(R𝑑) is normalized as

F 𝑓 (𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝑥·𝜔 𝑓 (𝑥) 𝑑𝑥, 𝜔 ∈ R𝑑 .

For any 𝑥, 𝜔 ∈ R𝑑 , the modulation 𝑀𝜔 and translation 𝑇𝑥 operators are
defined as

𝑀𝜔 𝑓 (𝑡) = 𝑒2𝜋𝑖𝑡·𝜔 𝑓 (𝑡) , 𝑇𝑥 𝑓 (𝑡) = 𝑓 (𝑡 − 𝑥) .
Their composition 𝜋(𝑥, 𝜔) = 𝑀𝜔𝑇𝑥 is called a time-frequency shift.

Given a complex-valued function 𝑓 on R𝑑 , the involution 𝑓 ∗ is defined as

𝑓 ∗(𝑡) B 𝑓 (−𝑡), 𝑡 ∈ R𝑑 .
The short-time Fourier transform (STFT) of a signal 𝑓 ∈ S′(R𝑑) with

respect to the window function 𝑔 ∈ S(R𝑑) is defined as
(13)
𝑉𝑔 𝑓 (𝑥, 𝜔) = ⟨ 𝑓 , 𝜋(𝑥, 𝜔)𝑔⟩ = F ( 𝑓 ·𝑇𝑥𝑔) (𝜔) =

∫
R𝑑

𝑓 (𝑦) 𝑔(𝑦 − 𝑥) 𝑒−2𝜋𝑖𝑦·𝜔 𝑑𝑦.

The group of invertible, real-valued 2𝑑 × 2𝑑 matrices is denoted by
GL (2𝑑,R) =

{
𝑀 ∈ R2𝑑×2𝑑 | det 𝑀 ≠ 0

}
,

and we denote the transpose of an inverse matrix by
𝑀# ≡ (𝑀−1)⊤ = (𝑀⊤)−1, 𝑀 ∈ GL (2𝑑,R) .

Let 𝐽 denote the canonical symplectic matrix in R2𝑑 , namely

𝐽 =

(
0𝑑 𝐼𝑑
−𝐼𝑑 0𝑑

)
.

Observe that, for 𝑧 = (𝑧1, 𝑧2) ∈ R2𝑑 , we have 𝐽𝑧 = 𝐽 (𝑧1, 𝑧2) = (𝑧2,−𝑧1) ,
𝐽−1𝑧 = 𝐽−1 (𝑧1, 𝑧2) = (−𝑧2, 𝑧1) = −𝐽𝑧, and 𝐽2 = −𝐼2𝑑×2𝑑 .

2.1. Function spaces. Recall that 𝐶0(R𝑑) denotes the class of continuous
functions on R𝑑 vanishing at infinity.
Modulation spaces. Fix a non-zero window 𝑔 ∈ S(R𝑑) and 1 ≤ 𝑝, 𝑞 ≤ ∞.
(𝑖) The modulation space 𝑀 𝑝,𝑞 (R𝑑) consists of all temperate distributions
𝑓 ∈ S′(R𝑑) such that 𝑉𝑔 𝑓 ∈ 𝐿𝑝,𝑞 (R2𝑑) (mixed-norm Lebesgue space). The
norm on 𝑀 𝑝,𝑞 is

∥ 𝑓 ∥𝑀 𝑝,𝑞 = ∥𝑉𝑔 𝑓 ∥𝐿𝑝,𝑞 =

(∫
R𝑑

(∫
R𝑑
|𝑉𝑔 𝑓 (𝑥, 𝜔) |𝑝 𝑑𝑥

)𝑞/𝑝
𝑑𝜔

)1/𝑞

,
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(with obvious modifications for 𝑝 = ∞ or 𝑞 = ∞). If 𝑝 = 𝑞, we write 𝑀 𝑝

instead of 𝑀 𝑝,𝑝.
(𝑖𝑖) The modulation space 𝑊 (F 𝐿𝑝, 𝐿𝑞) (R𝑑) can be defined as the space of
distributions 𝑓 ∈ S′(R𝑑) such that

∥ 𝑓 ∥𝑊 (F 𝐿𝑝 ,𝐿𝑞) (R𝑑) :=

(∫
R𝑑

(∫
R𝑑
|𝑉𝑔 𝑓 (𝑥, 𝜔) |𝑝 𝑑𝜔

)𝑞/𝑝
𝑑𝑥

)1/𝑞

< ∞

(with obvious modifications for 𝑝 = ∞ or 𝑞 = ∞). It can also be viewed
as a special case of Wiener amalgam spaces [21]. Though their inventor
H.G. Feichtinger nowadays suggests to call it modulation rather than Wiener
amalgam space, since its definition involves the mixed-Lebesgue norm of
the short-time Fourier transform of 𝑓 .

The so-called fundamental identity of time-frequency analysis
(14) 𝑉𝑔 𝑓 (𝑥, 𝜔) = 𝑒−2𝜋𝑖𝑥·𝜔𝑉�̂� 𝑓 (𝜔,−𝑥)
implies that

∥ 𝑓 ∥𝑀 𝑝,𝑞 =

(∫
R𝑑
∥ 𝑓 𝑇𝜔�̂�∥𝑞F 𝐿𝑝 (𝜔) 𝑑𝜔

)1/𝑞
= ∥ 𝑓 ∥𝑊 (F 𝐿𝑝 ,𝐿𝑞) .

Hence the𝑊 (F 𝐿𝑝, 𝐿𝑞) spaces under our consideration are simply the image
via the Fourier transform of the 𝑀 𝑝,𝑞 spaces:
(15) F (𝑀 𝑝,𝑞) = 𝑊 (F 𝐿𝑝, 𝐿𝑞).

The spaces 𝑀 𝑝,𝑞 (R𝑑) and 𝑊 (F 𝐿𝑝, 𝐿𝑞) (R𝑑) are Banach spaces. Further,
their definition is independent of the choice of the window 𝑔. The reader
may find a comprehensive discussion of these function spaces in [21, 20, 26].
In particular, for 𝑝 = 𝑞, we obtain

𝑀 𝑝 (R𝑑) = 𝑊 (F 𝐿𝑝, 𝐿𝑝) (R𝑑), 1 ≤ 𝑝 ≤ ∞.
Recall that the class of admissible windows for computing the modulation

space norm can be extended to 𝑀1 \ {0} (cf. [26, Thm. 11.3.7] and [15,
Thm. 2.2]).

For 𝑝 = 𝑞 = 2, we have
𝑀2(R𝑑) = 𝐿2(R𝑑),

the Hilbert space of square-integrable functions. Among the properties of
modulation spaces we list the following results.

Lemma 2.1. For 1 ≤ 𝑝, 𝑞, 𝑝1, 𝑞1, 𝑝2, 𝑞2 ≤ ∞, we have
(i) 𝑀 𝑝1,𝑞1 (R𝑑) ↩→ 𝑀 𝑝2,𝑞2 (R𝑑), if 𝑝1 ≤ 𝑝2 and 𝑞1 ≤ 𝑞2.
(ii) If 1 ≤ 𝑝, 𝑞 < ∞, then (𝑀 𝑝,𝑞 (R𝑑))′ = 𝑀 𝑝′,𝑞′ (R𝑑).
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2.2. Basic Properties of 𝑀1. Here we collect the main properties of the
modulation space 𝑀1(R𝑑), also known as the Feichtinger algebra [19]. By
Lemma 2.1 (𝑖𝑖) we infer its dual space

(𝑀1(R𝑑))′ = 𝑀∞(R𝑑)
and the inclusions 𝑀1(R𝑑) ←↪ 𝑀 𝑝,𝑞 (R𝑑), for every 1 ≤ 𝑝, 𝑞 ≤ ∞. In
particular,

𝑀1(R𝑑) ↩→ 𝐿2(R𝑑) ↩→ 𝑀∞(R𝑑).
There are plenty of equivalent characterizations for the Feichtinger algebra,
we refer the interested reader to cf. [35].

Proposition 2.2. (i)
(
𝑀1(R𝑑), ∥·∥𝑀1

)
is a Banach space for any fixed

non-zero window 𝑔 ∈ 𝑀1(R𝑑), and different windows yield equiva-
lent norms.

(ii)
(
𝑀1(R𝑑), ∥·∥𝑀1

)
is a time-frequency homogeneous Banach space:

for any 𝑧 ∈ R2𝑑 , 𝑓 ∈ 𝑀1(R𝑑), one has 𝜋 (𝑧) 𝑓 ∈ 𝑀1(R𝑑) and
∥𝜋 (𝑧) 𝑓 ∥𝑀1 = ∥ 𝑓 ∥𝑀1 . In particular, it is the smallest time-frequency
homogeneous Banach space containing the Gaussian function.

(iii) The Schwartz class S(R𝑑) is a subset of 𝑀1(R𝑑) and 𝐿2(R𝑑) is the
completion of 𝑀1(R𝑑) with respect to ∥·∥𝐿2 norm.

(iv) 𝑀1(R𝑑) is invariant under the Fourier transform, i.e. for any 𝑓 ∈
𝑀1(R𝑑) one has F 𝑓 ∈ 𝑀1(R𝑑) and ∥F 𝑓 ∥𝑀1 = ∥ 𝑓 ∥𝑀1 .

Recall that the tensor product of two functions 𝑓 , 𝑔 : R𝑑 → C it is defined
as

𝑓 ⊗ 𝑔 : R2𝑑 → C : (𝑥, 𝑦) ↦→ 𝑓 ⊗ 𝑔 (𝑥, 𝑦) = 𝑓 (𝑥) 𝑔 (𝑦) .
Clearly the tensor product ⊗ is a bilinear bounded mapping from 𝐿2(R𝑑) ×
𝐿2(R𝑑) into 𝐿2 (

R2𝑑 ) . Feichtinger algebra is well behaved under tensor
products and we list a few results.

Proposition 2.3. (i) The tensor product

⊗ : 𝑀1(R𝑑) × 𝑀1(R𝑑) → 𝑀1
(
R2𝑑

)
is a bilinear bounded operator.

(ii) 𝑀1 enjoys the tensor factorization property1: the space 𝑀1(R2𝑑)
consists of all functions of the form

𝑓 =
∑︁
𝑛∈N

𝑔𝑛 ⊗ ℎ𝑛,

1That is,
𝑀1 (R2𝑑) ≃ 𝑀1 (R𝑑)⊗̂𝑀1 (R𝑑),

where the symbol ⊗̂ denotes the projective tensor product (see [35] for the details).
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where {𝑔𝑛}, {ℎ𝑛} are (sequences of) functions in 𝑀1(R𝑑) such that∑︁
𝑛∈N
∥𝑔𝑛∥𝑀1 ∥ℎ𝑛∥𝑀1 < ∞.

(iii) The tensor product is well defined on 𝑀∞: for any 𝑓 , 𝑔 ∈ 𝑀∞(R𝑑),
𝑓 ⊗ 𝑔 is the unique element of 𝑀∞(R2𝑑) such that

⟨ 𝑓 ⊗ 𝑔, 𝜙1 ⊗ 𝜙2⟩ ≡ ⟨ 𝑓 , 𝜙1⟩ ⟨𝑔, 𝜙2⟩ , ∀𝜙1, 𝜙2 ∈ 𝑀1(R𝑑).

Just as the (temperate) distributions are related to the Schwartz kernel the-
orem, there is an important kernel theorem in the context of time-frequency
analysis, the Feichtinger kernel theorem [22].

Theorem 2.4. (i) Every distribution 𝑘 ∈ 𝑀∞(R2𝑑) defines a bounded
linear operator 𝑇𝑘 : 𝑀1(R𝑑) → 𝑀∞(R𝑑) according to

⟨𝑇𝑘 𝑓 , 𝑔⟩ = ⟨𝑘, 𝑔 ⊗ 𝑓 ⟩, ∀ 𝑓 , 𝑔 ∈ 𝑀1(R𝑑),
with ∥𝑇𝑘 ∥𝑀1→𝑀∞ ≤ ∥𝑘 ∥𝑀∞ .

(ii) For any bounded operator 𝑇 : 𝑀1(R𝑑) → 𝑀∞(R𝑑) there exists a
unique kernel 𝑘𝑇 ∈ 𝑀∞(R2𝑑) such that

⟨𝑇 𝑓 , 𝑔⟩ = ⟨𝑘𝑇 , 𝑔 ⊗ 𝑓 ⟩, ∀ 𝑓 , 𝑔 ∈ 𝑀1(R𝑑).

The proofs of the aforementioned results can be found in the cited ref-
erences. We wish to highlight the comprehensive survey [35], where the
properties of the Feichtinger algebra are explored in full generality.

2.3. Bilinear coordinate transformations. Let us summarize the prop-
erties of bilinear coordinate transformations in the time-frequency plane.

Given a matrix 𝐴 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
∈ R2𝑑×2𝑑 with 𝑑 × 𝑑 blocks 𝐴𝑖 𝑗 ∈ R𝑑×𝑑 ,

𝑖, 𝑗 = 1, 2, we use the symbol 𝔗𝐴 to denote the transformation acting on a
function 𝐹 : R2𝑑 → C as

𝔗𝐴𝐹 (𝑥, 𝑦) = 𝐹

(
𝐴

(
𝑥

𝑦

))
= 𝐹 (𝐴11𝑥 + 𝐴12𝑦, 𝐴21𝑥 + 𝐴22𝑦) .

The following lemma collects elementary facts on such transformations.

Lemma 2.5. (i) For any 𝐴, 𝐵 ∈ R2𝑑×2𝑑 we have 𝔗𝐴𝔗𝐵 = 𝔗𝐵𝐴.
(ii) If 𝐴 ∈ GL (2𝑑,R), the transformation 𝔗𝐴 is a topological iso-

morphism on 𝐿2(R2𝑑) with inverse 𝔗−1
𝐴

= 𝔗𝐴−1 and adjoint 𝔗∗
𝐴
=

|det 𝐴|−1 𝔗𝐴−1 .
(iii) If 𝐴 ∈ GL (2𝑑,R), the transformation 𝔗𝐴 is an isomorphism on

𝑀1(R2𝑑).
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(iv) For any 𝐴 ∈ GL (2𝑑,R), 𝑓 ∈ 𝐿2(R𝑑), 𝑥, 𝜔 ∈ R𝑑:

𝔗𝐴𝑇𝑥 𝑓 = 𝑇𝐴−1𝑥𝔗𝐴 𝑓 , 𝔗𝐴𝑀𝜔 𝑓 = 𝑀𝐴⊤𝜔𝔗𝐴 𝑓 .

Proof. The only non-trivial issue is the continuity on 𝑀1. By [10, Prop.
3.1] we have

∥𝔗𝐴𝐹∥𝑀1 ≤ 𝐶 |det 𝐴|−1 (
det

(
𝐼 + 𝐴⊤𝐴

) )1/2 ∥𝐹∥𝑀1 ,

for some constant 𝐶 > 0. □

Two special transformations deserve a separate notation. The first is the
flip operator

�̃� (𝑥, 𝑦) ≡ 𝔗𝐼𝐹 (𝑥, 𝑦) = 𝐹 (𝑦, 𝑥) , 𝐼 =

(
0𝑑 𝐼𝑑
𝐼𝑑 0𝑑

)
∈ GL (2𝑑,R) ,

while the other one is the reflection operator:

I𝐹 (𝑥, 𝑦) ≡ 𝔗−𝐼𝐹 (𝑥, 𝑦) = 𝐹 (−𝑥,−𝑦) .
Sometimes we will also write I = −𝐼 ∈ GL (2𝑑,R).

2.4. Partial Fourier transforms. Given 𝐹 ∈ 𝐿1(R2𝑑), we use the symbols
F1 and F2 to denote the partial Fourier transforms

F1𝐹 (b, 𝑦) = �̂�𝑦 (b) =
∫
R𝑑

𝑒−2𝜋𝑖b ·𝑡𝐹 (𝑡, 𝑦) 𝑑𝑡, b, 𝑦 ∈ R𝑑

F2𝐹 (𝑥, 𝜔) = 𝐹𝑥 (𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑡𝐹 (𝑥, 𝑡) 𝑑𝑡, 𝑥, 𝜔 ∈ R𝑑 ,

where ·̂ denotes the Fourier transform on 𝐿1(R𝑑) and

𝐹𝑥 (𝑦) = 𝐹 (𝑥, 𝑦) , 𝐹𝑦 (𝑥) = 𝐹 (𝑥, 𝑦) 𝑥, 𝑦 ∈ R𝑑

are the sections of 𝐹 at fixed 𝑥 and 𝑦, respectively. The definition is well-
posed thanks to Fubini’s theorem, which implies that 𝐹𝑥 ∈ 𝐿1

(
R𝑑𝑦

)
for a.e.

𝑥 ∈ R𝑑 and 𝐹𝑦 ∈ 𝐿1 (
R𝑑𝑥

)
for a.e. 𝑦 ∈ R𝑑 , thus F1𝐹 and F2𝐹 are indeed well

defined. The Fourier transform F is therefore related to the partial Fourier
transforms as

F = F1F2 = F2F1.

Using Plancherel’s theorem and properties of modulation spaces (Proposi-
tion 2.2, item (𝑖𝑣)), the following extension of the partial Fourier transform
is routine.

Lemma 2.6. (i) The partial Fourier transform F2 is a unitary operator
on 𝐿2(R2𝑑). In particular,

F ∗2 𝐹 (𝑥, 𝑦) = F
−1

2 𝐹 (𝑥, 𝑦) = F2𝐹 (𝑥,−𝑦) = 𝔗I2F2𝐹 (𝑥, 𝑦) ,
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where I2 =

(
𝐼 0
0 −𝐼

)
.

(ii) The partial Fourier transform F2 is an isomorphism on 𝑀1(R2𝑑)
and on 𝑀∞(R2𝑑).

3. Matrix-Wigner distributions

Let us define the main characters of this survey.

Definition 3.1. Let 𝐴 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
∈ GL (2𝑑,R) . The time-frequency

distribution of Wigner type for 𝑓 and 𝑔 associated with 𝐴 (in short: matrix-
Wigner distribution, MWD) is defined for suitable functions 𝑓 , 𝑔 as

(16) B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔) = F2𝔗𝐴 ( 𝑓 ⊗ 𝑔) (𝑥, 𝜔) .

When 𝑔 = 𝑓 , we write B𝐴 𝑓 for B𝐴 ( 𝑓 , 𝑓 ).

Explicitly, B𝐴 is given by

B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓 (𝐴11𝑥 + 𝐴12𝑦) 𝑔 (𝐴21𝑥 + 𝐴22𝑦)𝑑𝑦.

This definition is meaningful on many function spaces. A first result is
for the triple (𝑀1, 𝐿2, 𝑀∞).

Proposition 3.2. Assume 𝐴 ∈ GL (2𝑑,R).
(i) If 𝑓 , 𝑔 ∈ 𝐿2(R𝑑), then B𝐴 ( 𝑓 , 𝑔) ∈ 𝐿2(R2𝑑) and the mapping
B𝐴 : 𝐿2(R𝑑) × 𝐿2(R𝑑) → 𝐿2(R2𝑑) is continuous. Furthermore,
span

{
B𝐴 ( 𝑓 , 𝑔) | 𝑓 , 𝑔 ∈ 𝐿2(R𝑑)

}
is a dense subset of 𝐿2(R2𝑑).

(ii) If 𝑓 , 𝑔 ∈ 𝑀1(R𝑑), then B𝐴 ( 𝑓 , 𝑔) ∈ 𝑀1(R2𝑑) and the mapping
B𝐴 : 𝑀1(R𝑑) × 𝑀1(R𝑑) → 𝑀1(R2𝑑) is continuous.

(iii) If 𝑓 , 𝑔 ∈ 𝑀∞(R𝑑), then B𝐴 ( 𝑓 , 𝑔) ∈ 𝑀∞(R2𝑑) and the mapping
B𝐴 : 𝑀∞(R𝑑) × 𝑀∞(R𝑑) → 𝑀∞(R2𝑑) is continuous.

The standard time-frequency representations covered within this frame-
work include for instance:

• the short-time Fourier transform:

(17) 𝑉𝑔 𝑓 (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓 (𝑦) 𝑔 (𝑦 − 𝑥)𝑑𝑦 = B𝐴𝑆𝑇
( 𝑓 , 𝑔) (𝑥, 𝜔) ,

where

𝐴𝑆𝑇 =

(
0 𝐼

−𝐼 𝐼

)
;
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• the cross-ambiguity function:
(18)

𝐴𝑚𝑏 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓
(
𝑦 + 𝑥

2

)
𝑔

(
𝑦 − 𝑥

2

)
𝑑𝑦 = B𝐴𝐴𝑚𝑏

( 𝑓 , 𝑔) (𝑥, 𝜔) ,

where

𝐴𝐴𝑚𝑏 =

( 1
2 𝐼 𝐼

−1
2 𝐼 𝐼

)
;

• the Wigner distribution:

(19) 𝑊 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓
(
𝑥 + 𝑦

2

)
𝑔

(
𝑥 − 𝑦

2

)
𝑑𝑦;

• the Rihaczek distribution:
(20)

𝑅 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓 (𝑥) 𝑔 (𝑥 − 𝑦)𝑑𝑦 = 𝑒−2𝜋𝑖𝑥·𝜔 𝑓 (𝑥) �̂� (𝜔).

The latter two distributions are special cases of the 𝜏-Wigner distribution
defined in (6). For any 𝜏 ∈ [0, 1], we have

𝑊𝜏 ( 𝑓 , 𝑔) (𝑥, 𝜔) = B𝐴𝜏
( 𝑓 , 𝑔) (𝑥, 𝜔) ,

where

(21) 𝐴𝜏 =

(
𝐼 𝜏𝐼

𝐼 − (1 − 𝜏) 𝐼

)
.

The list of elementary properties is in line of those for the short-time
Fourier transform or the Wigner distribution. Mostly the proof is a straight-
forward computation, and we refer to [1, 11] for the details. The interesting
aspect is how the parametrizing matrix 𝐴 intervenes in the formulas for B𝐴.

Proposition 3.3. Let 𝐴 ∈ GL (2𝑑,R) and 𝑓 , 𝑔 ∈ 𝑀1(R𝑑). The following
properties hold:

(i) Interchanging 𝑓 and 𝑔:

B𝐴 (𝑔, 𝑓 ) (𝑥, 𝜔) = B𝐶1 ( 𝑓 , 𝑔) (𝑥, 𝜔), (𝑥, 𝜔) ∈ R2𝑑 ,

where

𝐶1 = 𝐼 𝐴I2 =

(
0 𝐼

𝐼 0

) (
𝐴11 𝐴12
𝐴21 𝐴22

) (
𝐼 0
0 −𝐼

)
=

(
𝐴21 −𝐴22
𝐴11 −𝐴12

)
.

In particular, B𝐴 𝑓 is a real-valued function if and only if 𝐴 = 𝐶,
namely

𝐴11 = 𝐴21, 𝐴12 = −𝐴22.
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(ii) Behaviour of Fourier transforms:

B𝐴

(
𝑓 , �̂�

)
(𝑥, 𝜔) = |det 𝐴|−1 B𝐶2 ( 𝑓 , 𝑔) (−𝜔, 𝑥) , (𝑥, 𝜔) ∈ R2𝑑 ,

where

𝐶2 = I2𝐴#𝐼 =

(
𝐼 0
0 −𝐼

) (
𝐴−1

)⊤ (
0 𝐼

𝐼 0

)
.

(iii) Fourier transform of a MWD:
(22) FB𝐴 ( 𝑓 , 𝑔) (b, [) = B𝐴𝐽 ( 𝑓 , 𝑔) ([, b) ,

where

𝐴𝐽 =

(
𝐴11 𝐴12
𝐴21 𝐴22

) (
0 𝐼

−𝐼 0

)
=

(
−𝐴12 𝐴11
−𝐴22 𝐴21

)
.

3.1. Connection to the short-time Fourier transform. We first investigate
the relation of the time-frequency representations B𝐴 to the ordinary STFT.
Whereas the Wigner distribution and the ambiguity transform coincide with
the STFT up to normalization, the time-frequency representation B𝐴 can be
written as a STFT only under an extra condition.

Definition 3.4. A block matrix 𝐴 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
∈ R2𝑑×2𝑑 is called left-

regular (resp. right-regular), if the submatrices 𝐴11, 𝐴21 ∈ R𝑑×𝑑 (resp.
𝐴12, 𝐴22 ∈ R𝑑×𝑑) are invertible.

It is not difficult to prove that 𝐴 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
∈ GL (2𝑑,R) is left-

regular (resp. right-regular) if and only if the matrix2 𝐴# =
(
𝐴−1)⊤ =(

(𝐴#)11 (𝐴#)12
(𝐴#)21 (𝐴#)22

)
is right-regular (resp. left-regular).

As a matter of fact, the right-regularity of the matrix 𝐴𝑆𝑇 in (17) stands
out at a first glance and one might guess that this is an essential condi-
tion to express B𝐴 ( 𝑓 , 𝑔) as a short-time Fourier transform. In fact, this
characterization is very strong, as stated in the subsequent results.

Theorem 3.5 ([1, Thm. 1.2.5]). Assume that 𝐴 ∈ GL (2𝑑,R) is right-
regular. For every 𝑓 , 𝑔 ∈ 𝑀1(R𝑑) the following formula holds:
(23)
B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔) = |det 𝐴12 |−1 𝑒2𝜋𝑖𝐴#

12𝜔·𝐴11𝑥𝑉�̃� 𝑓 (𝑐 (𝑥) , 𝑑 (𝜔)) , 𝑥, 𝜔 ∈ R𝑑 ,
where

𝑐 (𝑥) =
(
𝐴11 − 𝐴12𝐴

−1
22 𝐴21

)
𝑥, 𝑑 (𝜔) = 𝐴#

12𝜔, �̃� (𝑡) = 𝑔

(
𝐴22𝐴

−1
12 𝑡

)
.

2Beware that (𝐴#)𝑖 𝑗 ≠ 𝐴#
𝑖 𝑗
= (𝐴⊤

𝑖 𝑗
)−1, 𝑖, 𝑗 = 1, 2.
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For the sake of clarity, one might use the following formulation:

Theorem 3.6. Given matrices 𝑀, 𝑁, 𝑃 ∈ R𝑑×𝑑 and 𝑄, 𝑅 ∈ GL(R, 𝑑), set

𝐴 =

(
𝑄#𝑁⊤𝑀 𝑄#

𝑅
(
𝑄#𝑁⊤𝑀 − 𝑃

)
𝑅𝑄#

)
.

Then 𝐴 is right-regular and

B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔) = |det𝑄 | 𝑒2𝜋𝑖𝑀𝑥·𝑁𝜔𝑉𝑔◦𝑅 (𝑃𝑥, 𝑄𝜔) , 𝑥, 𝜔 ∈ R𝑑 ,

for any 𝑓 , 𝑔 ∈ 𝑀1(R𝑑).

Proof. The proof is by computation:

|det𝑄 | 𝑒2𝜋𝑖𝑀𝑥·𝑁𝜔𝑉𝑔◦𝑅 (𝑃𝑥, 𝑄𝜔)

= |det𝑄 | 𝑒2𝜋𝑖𝑀𝑥·𝑁𝜔
∫
R𝑑

𝑒−2𝜋𝑖𝑄𝜔·𝑦 𝑓 (𝑦) 𝑔 (𝑅𝑦 − 𝑅𝑃𝑥)𝑑𝑦

= |det𝑄 |
∫
R𝑑

𝑒−2𝜋𝑖𝑄𝜔·(𝑦−𝑄#𝑁⊤𝑀𝑥) 𝑓 (𝑦) 𝑔 (𝑅𝑦 − 𝑅𝑃𝑥)𝑑𝑦

= |det𝑄 |
∫
R𝑑

𝑒−2𝜋𝑖𝑄𝜔·𝑦 𝑓
(
𝑦 +𝑄#𝑁⊤𝑀𝑥

)
𝑔

(
𝑅𝑦 + 𝑅

(
𝑄#𝑁⊤𝑀 − 𝑃

)
𝑥
)
𝑑𝑦

=

∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓
(
𝑄#𝑦 +𝑄#𝑁⊤𝑀𝑥

)
𝑔

(
𝑅𝑄#𝑦 + 𝑅

(
𝑄#𝑁⊤𝑀 − 𝑃

)
𝑥
)
𝑑𝑦

=B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔) ,

where 𝐴 = 𝐴𝑀,𝑁,𝑃,𝑄,𝑅 is as claimed.
□

Remark 3.7. The peculiar way the blocks of 𝐴 are combined in

𝑐(𝑥) =
(
𝐴11 − 𝐴12𝐴

−1
22 𝐴21

)
𝑥

is a well-known construction in linear algebra and is usually called Schur
complement. The Schur complement comes up many times in our results,
ultimately because of its distinctive role in the inversion of block matrices
(cf. for instance [38, Thm. 2.1]).

For distributions associated with right-regular matrices, most results about
the short-time Fourier transform can be formulated for B𝐴: for instance, one
can easily produce orthogonality formulae or a reconstruction formula for
B𝐴 𝑓 . We will study these issues in more generality in the subsequent
sections.
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3.2. Main properties of the transformation B𝐴. Having in mind that the
entire knowledge on the uncertainty principles could be easily transposed
here, we give a qualitative result in the spirit of Benedick’s theorem for
the Fourier transform - which is based on the corresponding uncertainty
principle for the STFT [27, Thm. 2.4.2].

Theorem 3.8 ([1, Thm. 1.4.3]). Let 𝐴 ∈ GL (2𝑑,R) be a right-regular ma-
trix. If the support ofB𝐴 ( 𝑓 , 𝑔) has finite Lebesgue measure, then necessarily
𝑓 ≡ 0 or 𝑔 ≡ 0.

Next we characterize the boundedness of B𝐴 ( 𝑓 , 𝑔) on Lebesgue spaces -
which is a completely established issue for the STFT, cf. [4].

Proposition 3.9. Assume that 𝐴 ∈ GL (2𝑑,R) is right-regular. For any
1 ≤ 𝑝 ≤ ∞ and 𝑞 ≥ 2 such that 𝑞′ ≤ 𝑝 ≤ 𝑞, 𝑓 ∈ 𝐿𝑝 (R𝑑) and 𝑔 ∈ 𝐿𝑝′ (R𝑑),
we have

(i) B𝐴 ( 𝑓 , 𝑔) ∈ 𝐿𝑞 (R2𝑑), with

(24) ∥B𝐴 ( 𝑓 , 𝑔)∥𝐿𝑞 ≤
∥ 𝑓 ∥𝐿𝑝 ∥𝑔∥𝐿𝑝′

|det 𝐴|
1
𝑞 |det 𝐴12 |

1
𝑝
− 1

𝑞 |det 𝐴22 |
1
𝑝′−

1
𝑞

.

(ii) If 1 < 𝑝 < ∞ then B𝐴 ( 𝑓 , 𝑔) ∈ 𝐶0(R2𝑑). In particular, B𝐴 ( 𝑓 , 𝑔) ∈
𝐿∞(R2𝑑).

Furthermore, if 1 ≤ 𝑝, 𝑞 ≤ ∞ such that 𝑝 < 𝑞′ or 𝑝 > 𝑞, the map
B𝐴 ( 𝑓 , 𝑔) : 𝐿𝑝 (R𝑑) × 𝐿𝑝′ (R𝑑) → 𝐿𝑞 (R2𝑑) is not continuous.

Proof. We refer to the proof of [11, Prop. 3.9] for the details concerning the
first part. Item (𝑖𝑖) is a direct application of [4, Prop. 3.2]. □

The right-regularity of 𝐴 is not only a technical condition required for
(23) to hold, but also has unexpected effects on the continuity of B𝐴.

Theorem 3.10 ([1, Theorem 1.2.9]). Assume 𝐴 ∈ GL (2𝑑,R) such that
det 𝐴22 ≠ 0 but det 𝐴12 = 0. Then there exist 𝑓 , 𝑔 ∈ 𝐿2(R𝑑) such that
B𝐴 ( 𝑓 , 𝑔) is not a continuous function on R2𝑑 .

Let us exhibit the orthogonality relations, which extend the Parseval iden-
tity to time-frequency distributions. The generalization of the orthogonality
relations was one of the main motivations for introducing B𝐴 in [1].

Theorem 3.11 ([1, Thm. 1.3.1]). Let 𝐴 ∈ GL (2𝑑,R) and 𝑓1, 𝑓2, 𝑔1, 𝑔2 ∈
𝐿2(R𝑑). Then
(25)
⟨B𝐴 ( 𝑓1, 𝑔1) ,B𝐴 ( 𝑓2, 𝑔2)⟩𝐿2 (R2𝑑) =

1
|det 𝐴| ⟨ 𝑓1, 𝑓2⟩𝐿2 (R𝑑) ⟨𝑔1, 𝑔2⟩𝐿2 (R𝑑) .
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In particular,

∥B𝐴 ( 𝑓 , 𝑔)∥𝐿2 (R2𝑑) =
1

|det 𝐴|1/2
∥ 𝑓 ∥𝐿2 (R𝑑) ∥𝑔∥𝐿2 (R𝑑) .

Thus, the representation B𝐴,𝑔 : 𝐿2(R𝑑) ∋ 𝑓 ↦→ B𝐴 ( 𝑓 , 𝑔) ∈ 𝐿2(R2𝑑) is a
non-trivial constant multiple of an isometry whenever 𝑔 . 0.

The proof follows directly from the definition in (16), since F2 is unitary
and 𝔗𝐴 is a multiple of a unitary operator.

Corollary 3.12. If {𝑒𝑛}𝑛∈N is an orthonormal basis for 𝐿2(R𝑑), then{
|det 𝐴|1/2 B𝐴 (𝑒𝑚, 𝑒𝑛) |𝑚, 𝑛 ∈ N

}
is an orthonormal basis for 𝐿2(R2𝑑).

While the relevance of the orthogonality relations for signal processing or
physics purposes has been sometimes debated [6], they are in fact a useful
tool for proving several properties of the time-frequency distributions that
satisfy them. In particular, orthogonality relations are the main ingredients
of a general procedure for reconstructing a signal from the knowledge of its
(cross-)time-frequency distribution with a given window.

Theorem 3.13 ([11, Cor. 3.1.7]). Assume 𝐴 ∈ GL (2𝑑,R) and fix 𝑔, 𝛾 ∈
𝐿2(R𝑑) such that ⟨𝑔, 𝛾⟩ ≠ 0. Then, for any 𝑓 ∈ 𝐿2(R𝑑), the following
inversion formula holds:

𝑓 =
|det 𝐴|
⟨𝑔, 𝛾⟩

B∗𝐴,𝛾B𝐴,𝑔 𝑓 ,

whereB∗
𝐴,𝛾

: 𝐿2(R2𝑑) → 𝐿2(R𝑑) is the adjoint operator ofB𝐴,𝛾 ≡ B𝐴 (·, 𝛾),
defined as

B∗𝐴,𝛾𝐻 (𝑥) =
1

|det 𝐴|

∫
R𝑑

𝔗𝐴★F2𝐻 (𝑥, 𝑦) 𝛾 (𝑦) 𝑑𝑦,

with
𝐴★ = I2𝐴−1 ∈ GL (2𝑑,R) .

For right-regular matrices the reconstruction can be made more explicit.

Proposition 3.14 ([1, Thm. 1.3.3]). Let 𝐴 ∈ GL (2𝑑,R) be a right-regular
matrix, and 𝑔, 𝛾 ∈ 𝐿2(R𝑑) such that ⟨𝑔, 𝛾⟩ ≠ 0. The following inversion
formula (to be interpreted as vector-valued integral in 𝐿2(R𝑑)) holds for any
𝑓 ∈ 𝐿2(R𝑑):

𝑓 =
1
⟨𝑔, 𝛾⟩

∫
R2𝑑
B𝐴,𝛾 𝑓 (𝑥, 𝜔)

𝑒−2𝜋𝑖𝐴#
12𝜔·𝐴11𝑥

|det 𝐴12 |
𝑀𝑑 (𝜔)𝑇𝑐(𝑥) �̃�𝑑𝑥𝑑𝜔,
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where

𝑐 (𝑥) =
(
𝐴11 − 𝐴12𝐴

−1
22 𝐴21

)
𝑥, 𝑑 (𝜔) = 𝐴#

12𝜔, �̃� (𝑡) = 𝑔

(
𝐴22𝐴

−1
12 𝑡

)
.

Another property that is expected to hold for a time-frequency represen-
tation is the covariance under phase-space shifts.

Theorem 3.15 ([1, Thm. 1.5.1]). Let 𝐴 ∈ GL (2𝑑,R). For any 𝑓 , 𝑔 ∈
𝑀1(R𝑑) and 𝑎, 𝑏, 𝛼, 𝛽 ∈ R𝑑 , the following formula holds:

B𝐴

(
𝑀𝛼𝑇𝑎 𝑓 , 𝑀𝛽𝑇𝑏𝑔

)
(𝑥, 𝜔) = 𝑒2𝜋𝑖𝜎·𝑠𝑀(𝜌,−𝑠)𝑇(𝑟,𝜎)B𝐴 ( 𝑓 , 𝑔) (𝑥, 𝜔)

(26)

= 𝑒2𝜋𝑖𝜎·𝑠𝑒2𝜋𝑖(𝑥·𝜌−𝜔·𝑠)B𝐴 ( 𝑓 , 𝑔) (𝑥 − 𝑟, 𝜔 − 𝜎) ,(27)

where (
𝑟

𝑠

)
= 𝐴−1

(
𝑎

𝑏

)
,

(
𝜌

𝜎

)
= 𝐴⊤

(
𝛼

−𝛽

)
.

Of course, this result encompasses the covariance formula for the 𝜏-
Wigner distribution with 𝐴 = 𝐴𝜏 as in (21), cf. [15, Prop. 3.3] and also for
the STFT with 𝐴 = 𝐴𝑆𝑇 , cf [26, Lem. 3.1.3].

We now cite an amazing representation result for the STFT of a MWD,
sometimes called the magic formula for other distributions (cf. [28]). This
relation allows to painlessly extend our results to general function spaces
tailored for the purposes of time-frequency analysis, namely modulation
spaces.

Theorem 3.16 ([1, Thm. 1.7.1]). Assume 𝐴 ∈ GL (2𝑑,R) and 𝑓 , 𝑔, 𝜓, 𝜙 ∈
𝑀1(R𝑑), and set 𝑧 = (𝑧1, 𝑧2), Z = (Z1, Z2) ∈ R2𝑑 . Then,

(28) 𝑉B𝐴(𝜙,𝜓)B𝐴 ( 𝑓 , 𝑔) (𝑧, Z) = 𝑒−2𝜋𝑖𝑧2·Z2𝑉𝜙 𝑓 (𝑎, 𝛼)𝑉𝜓𝑔 (𝑏, 𝛽),

where (
𝑎

𝑏

)
= 𝐴I2

(
𝑧1
Z2

)
=

(
𝐴11𝑧1 − 𝐴12Z2
𝐴21𝑧1 − 𝐴22Z2

)
,(

𝛼

𝛽

)
= I2𝐴#

(
Z1
𝑧2

)
=

(
(𝐴#)11Z1 + (𝐴#)12𝑧2
−(𝐴#)21Z1 − (𝐴#)22𝑧2

)
.

As a concluding remark, we want to underline that the benefits of linear
algebra should be appreciated in view of the very short and simple proofs.
This aspect should not be underestimated: the proof of similar results for
certain special members has lead to quite cumbersome computations (cf.
the proofs for the 𝜏-Wigner distributions in [15]).
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3.3. Cohen class members as perturbations of the Wigner transform.
We already described the heuristics behind the Cohen class of distributions
in the introduction.

Definition 3.17 ([26]). A time-frequency distribution 𝑄 belongs to the Co-
hen’s class if there exists a tempered distribution \ ∈ S′(R2𝑑) such that

𝑄 ( 𝑓 , 𝑔) = 𝑊 ( 𝑓 , 𝑔) ∗ \, ∀ 𝑓 , 𝑔 ∈ S(R𝑑).

Although the Wigner distribution was the main inspiration for the MWDs
studied so far, the connection to the Cohen class is by no means clear.
This question is the point of departure of the paper [11] and the following
result completely characterizes the intersection between these families. We
rephrase [11, Thm. 1.1] using the Feichtinger algebra as follows.

Theorem 3.18. Let 𝐴 ∈ GL (2𝑑,R). The distribution B𝐴 belongs to the
Cohen class if and only if

𝐴 = 𝐴𝑀 =

(
𝐼 𝑀 + (1/2)𝐼
𝐼 𝑀 − (1/2)𝐼

)
as in (11), for some 𝑀 ∈ R𝑑×𝑑 . Furthermore, in this case we have

(29) 𝑊𝑀 ( 𝑓 , 𝑔) ≡ B𝐴𝑀
( 𝑓 , 𝑔) = 𝑊 ( 𝑓 , 𝑔) ∗ \𝑀 , 𝑓 , 𝑔 ∈ 𝑀1,

where the Cohen’s kernel \𝑀 ∈ 𝑆′0(R
𝑑) is

(30) \𝑀 = FΘ𝑀 , with Θ𝑀 (b, [) = 𝑒−2𝜋𝑖b ·𝑀[, (b, [) ∈ R2𝑑 .

If 𝑀 is invertible, the kernel \𝑀 is explicitly

(31) \𝑀 (𝑥, 𝜔) =
1

|det 𝑀 | 𝑒
2𝜋𝑖𝑥·𝑀−1𝜔, (𝑥, 𝜔) ∈ R2𝑑 .

We say that 𝐴 = 𝐴𝑀 is a Cohen-type matrix associated with 𝑀 ∈ R𝑑×𝑑 .

Remark 3.19. We mention that, according to the proof of the necessity
part in the previous result, a Cohen-type matrix 𝐴 should be defined by the
following conditions on the blocks:

(32) 𝐴11 = 𝐴21 = 𝐼, 𝐴12 − 𝐴22 = 𝐼 .

The choice 𝐴22 = 𝑀− (1/2)𝐼 with 𝑀 ∈ R𝑑×𝑑 is thus a suitable parametriza-
tion, but by no means the only possible one - and in fact neither the most
natural one. The reason underlying our choice appears if one writes down
the explicit formula for B𝐴𝑀

as
(33)

𝑊𝑀 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓

(
𝑥 +

(
𝑀 + 1

2
𝐼

)
𝑦

)
𝑔

(
𝑥 +

(
𝑀 − 1

2
𝐼

)
𝑦

)
𝑑𝑦,
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which reveals the similarity with the Wigner distribution. A sort of symmetry
with respect to the Wigner distribution (corresponding to 𝑀 = 0) immedi-
ately stands out. We interpret these representations as a family of “linear
perturbations” of the Wigner distribution and 𝑀 as the control parameter,
exactly as 𝜏 controls the degree of deviation of 𝜏-Wigner distributions. For
this reason, we will refer to 𝐴 = 𝐴𝑀 as the perturbative form of a Cohen-
type matrix. The analogy with the 𝜏-Wigner distributions naturally leads
to another representation, hence another choice of 𝐴22 in (32). A closer
inspection of the kernel (7) and also of (6) reveals that the role of perturba-
tion parameter is not played by 𝜏, rather by the deviation ` = 𝜏 − 1/2. In
this analogy one chooses 𝐴21 = 𝑇 ∈ R𝑑×𝑑 and 𝐴22 = −(𝐼 − 𝑇) and obtains
(34)
𝑊𝑇 ( 𝑓 , 𝑔) (𝑥, 𝜔) ≡ B𝐴𝑇

( 𝑓 , 𝑔) (𝑥, 𝜔) =
∫
R𝑑

𝑒−2𝜋𝑖𝜔·𝑦 𝑓 (𝑥 + 𝑇𝑦) 𝑔 (𝑥 − (𝐼 − 𝑇)𝑦)𝑑𝑦,

which should be compared to (6) (see also (21)). Occasionally, we refer to
𝐴𝑇 as the affine form of the Cohen-type matrix 𝐴. It is clear that the two
forms of a Cohen-type matrix are perfectly equivalent, the connection being

(35) 𝑀 = 𝑇 − (1/2)𝐼 .

Therefore, the choice of a form is just a matter of convenience: when
studying the properties of B𝐴 as a time-frequency representation, it seems
better to explicitly see the effect of the perturbation 𝑀 (which could be
easily turned off setting 𝑀 = 0) and use the perturbative form accordingly.
As an example of this, the perturbed representation of a Gaussian signal is
provided.

Lemma 3.20 ([11, Lem. 4.1]). Consider 𝐴 = 𝐴𝑀 ∈ GL (2𝑑,R) as in (11)
and 𝜑_ (𝑡) = 𝑒−𝜋𝑡

2/_, _ > 0. Then,

(36) 𝑊𝑀𝜑_ (𝑥, 𝜔) = (2_)𝑑/2 det (𝑆)−1/2 𝑒−2𝜋𝑥2/_

· 𝑒8𝜋(𝑀⊤𝑥·𝑆−1𝑀⊤𝑥)/_𝑒8𝜋𝑖𝑆−1𝜔·𝑀⊤𝑥𝑒−2𝜋_𝜔·𝑆−1𝜔,

where 𝑆 = 𝐼 + 4𝑀⊤𝑀 ∈ R𝑑×𝑑 .

3.3.1. Main properties of the Cohen class. The properties of a time-frequency
distribution belonging to the Cohen class are intimately related to the struc-
ture of the Cohen kernel. There is an established list of correspondences
between the kernel and the properties, which can be used to deduce the
following results. See [7, 11, 36, 37].

Proposition 3.21. Assume that B𝐴 belongs to the Cohen’s class. For any
𝑓 , 𝑔 ∈ 𝑀1(R𝑑), the following properties are satisfied:
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(i) Correct marginal densities:∫
R𝑑
B𝐴 𝑓 (𝑥, 𝜔) 𝑑𝜔 = | 𝑓 (𝑥) |2 ,

∫
R𝑑
B𝐴 𝑓 (𝑥, 𝜔) 𝑑𝑥 =

�� 𝑓 (𝜔)��2 , 𝑥, 𝜔 ∈ R𝑑 .

In particular, the energy is preserved:∬
R2𝑑
B𝐴 𝑓 (𝑥, 𝜔) 𝑑𝑥𝑑𝜔 = ∥ 𝑓 ∥2

𝐿2 .

(ii) Moyal’s identity:
⟨B𝐴 𝑓 ,B𝐴𝑔⟩𝐿2 (R2𝑑) = |⟨ 𝑓 , 𝑔⟩|2 .

(iii) Symmetry: for all 𝑥, 𝜔 ∈ R𝑑 ,
B𝐴 (I 𝑓 ) (𝑥, 𝜔) = IB𝐴 𝑓 (𝑥, 𝜔) = B𝐴 𝑓 (−𝑥,−𝜔) ,

B𝐴

(
𝑓

)
(𝑥, 𝜔) = I2B𝐴 𝑓 (𝑥, 𝜔) = B𝐴 (𝑥,−𝜔).

(iv) Convolution properties: for all 𝑥, 𝜔 ∈ R𝑑 ,
B𝐴 ( 𝑓 ∗ 𝑔) (𝑥, 𝜔) = B𝐴 𝑓 ∗1 B𝐴𝑔,

B𝐴 ( 𝑓 · 𝑔) (𝑥, 𝜔) = B𝐴 𝑓 ∗2 B𝐴𝑔.

Here ∗1 (and ∗2) denotes the convolution with respect to the first
(second) variable.

(v) Scaling invariance: setting 𝑈_ 𝑓 (𝑡) B |_ |𝑑/2 𝑓 (_𝑡), _ ∈ R \ {0},
𝑡 ∈ R𝑑 ,

B𝐴 (𝑈_ 𝑓 ) (𝑥, 𝜔) = B𝐴 𝑓

(
_𝑥, _−1𝜔

)
.

(vi) Strong support property3: the only MWDs in the Cohen class
satisfying the strong correct support properties are Rihaczek and
conjugate-Rihaczek distributions.

(vii) Weak support property4: the only MWDs in Cohen’s class satisfying
the weak correct support properties are the 𝜏-Wigner distributions
with 𝜏 ∈ [0, 1].

3Let 𝑄 𝑓 : R2𝑑
(𝑥,𝜔) → C be a time-frequency distribution associated with the signal

𝑓 : R𝑑𝑡 → C in a suitable function space. Recall that 𝑄 is said to satisfy the strong support
property if
𝑓 (𝑥) = 0⇔ 𝑄 𝑓 (𝑥, 𝜔) = 0, ∀𝜔 ∈ R𝑑 , 𝑓 (𝜔) = 0⇔ 𝑄 𝑓 (𝑥, 𝜔) = 0, ∀𝑥 ∈ R𝑑 .

4With the notation of the previous footnote, we say that 𝑄 satisfies the weak support
property if, for any signal 𝑓 :

𝜋𝑥 (supp𝑄 𝑓 ) ⊂ C (supp 𝑓 ) , 𝜋𝜔 (supp𝑄 𝑓 ) ⊂ C
(
supp 𝑓

)
,

where 𝜋𝑥 : R2𝑑
(𝑥,𝜔) → R

𝑑
𝑥 and 𝜋𝜔 : R2𝑑

(𝑥,𝜔) → R
𝑑
𝜔 are the projections onto the first and

second factors (R2𝑑
(𝑥,𝜔) ≃ R

𝑑
𝑥 × R𝑑𝜔) and C (𝐸) is the closed convex hull of 𝐸 ⊂ R𝑑 .
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We now give a few hints on several aspects of interests for both theoreti-
cal problems and applications; extensive discussions on these issues may be
found in [1, 11].

Real-valuedness. In view of Proposition 3.3 (𝑖), B𝐴0 = 𝑊 (the Wigner
distribution) is the only real-valued member of the family B𝐴𝑀

.

More on marginal densities. The marginal densities for a general distri-
bution B𝐴 can be easily computed. For 𝑓 , 𝑔 ∈ 𝑀1(R𝑑),∫

R𝑑
B𝐴 𝑓 (𝑥, 𝜔) 𝑑𝜔 = 𝑓 (𝐴11𝑥) 𝑓 (𝐴21𝑥),∫

R𝑑
B𝐴 𝑓 (𝑥, 𝜔) 𝑑𝑥 = |det 𝐴|−1 𝑓

(
(𝐴#)12𝜔

)
𝑓
(
−(𝐴#)22𝜔

)
.

The correct marginal densities are thus recovered if and only if 𝐴11 = 𝐴21 = 𝐼

and (𝐴#)12 = −(𝐴#)22 = 𝐼. These conditions force both |det 𝐴| = 1 and the
block structure of 𝐴 as that of Cohen’s type. This fact provides an equivalent
characterization of the distributions B𝐴 belonging to the Cohen class: these
are exactly those satisfying the correct marginal densities.

Relation between two distributions. Let 𝐴1 = 𝐴𝑀1 and 𝐴2 = 𝐴𝑀2 be
two Cohen-type matrices as in (11). The two distributions 𝑊𝑀1 and 𝑊𝑀2
are connected by a Fourier multiplier as follows ([11, Lem. 4.2]). For
𝑓 , 𝑔 ∈ 𝑀1(R𝑑),
(37) F𝑊𝑀2 ( 𝑓 , 𝑔) (b, [) = 𝑒−2𝜋𝑖b ·(𝑀2−𝑀1)[F𝑊𝑀1 ( 𝑓 , 𝑔) (b, [) .

Furthermore, if 𝑀2 − 𝑀1 ∈ GL (𝑑,R),

B𝐴2 ( 𝑓 , 𝑔) (𝑥, 𝜔) =
1

|det (𝑀2 − 𝑀1) |
𝑒2𝜋𝑖𝑥·(𝑀2−𝑀1)−1𝜔 ∗ B𝐴1 ( 𝑓 , 𝑔) (𝑥, 𝜔) .

The proofs follow at once from Theorem 3.18.

Regularity of the Cohen kernel. Let 𝐴 = 𝐴𝑀 ∈ GL (2𝑑,R) be a
Cohen-type matrix and assume in addition that 𝑀 ∈ GL (𝑑,R). The Cohen
kernel associated with B𝐴𝑀

is therefore given by (31), and we can study
its regularity with respect to the scale of modulation spaces: we have ([11,
Prop. 4.8])

\𝑀 , F \𝑀 ∈ 𝑀1,∞(R2𝑑) ∩𝑊
(
F 𝐿1, 𝐿∞

)
(R2𝑑).

This result has an interesting counterpart on the regularity of 𝑊𝑀 on all
modulation spaces, in view of the boundedness of Fourier multipliers with
symbols in 𝑊

(
F 𝐿1, 𝐿∞

)
(cf. [2, Lem. 8]):
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Theorem 3.22 ([11, Thm. 4.10]). Let 𝐴 = 𝐴𝑀 ∈ GL (2𝑑,R) be a Cohen-
type matrix with 𝑀 ∈ GL (𝑑,R) and 𝑓 ∈ 𝑀∞(R𝑑) be a signal. Then, for
any 1 ≤ 𝑝, 𝑞 ≤ ∞, we have

𝑊 𝑓 ∈ 𝑀 𝑝,𝑞 (R2𝑑) ⇐⇒ 𝑊𝑀 𝑓 ∈ 𝑀 𝑝,𝑞 (R2𝑑).

Unfortunately, one cannot go too far if the non-singularity of 𝑀 is dropped;
as a trivial instance, notice that for 𝑀 = 0 one has \0 = 𝛿, and it is easy to
verify that 𝛿 ∈ 𝑀1,∞(R2𝑑)\𝑊

(
F 𝐿1, 𝐿∞

)
(R2𝑑), cf. [13].

Perturbation and interferences. The emergence of unwanted artefacts
is a well-known drawback of any quadratic representation. The signal pro-
cessing literature is full of strategies to mitigate these effects (see for instance
[7, 32, 33]). For what concerns the Cohen class, it is folklore that the sever-
ity of interferences is somewhat related to the decay of the Cohen kernel.
In fact, a precise formulation of this principle is rather elusive and recent
contributions unravelled further non-trivial fine points ([14, Prop. 4.4 and
Thm. 4.6]). We remark that the chirp-like kernelΘ𝑀 = F \𝑀 does not decay
at all, and thus no smoothing effect should be expected for the perturbed
representations. This is confirmed by the experiments in dimension 𝑑 = 1 in
[3, 11]. The only effect of the perturbation consists of a distortion and relo-
cation of interferences, but there is no damping. Following the engineering
literature, we suggest that convolution with suitable decaying distributions
may provide some improvement, probably at the price of loosing other nice
properties.

Covariance formula. For any 𝑧 = (𝑧1, 𝑧2) , 𝑤 = (𝑤1, 𝑤2) ∈ R2𝑑 , the
covariance formula (26) now reads

(38) 𝑊𝑀 (𝜋 (𝑧) 𝑓 , 𝜋 (𝑤) 𝑔) (𝑥, 𝜔) = 𝑒2𝜋𝑖[ 1
2 (𝑧2+𝑤2)+𝑀 (𝑧2−𝑤2)] ·(𝑧1−𝑤1)

× 𝑀𝐽 (𝑧−𝑤)𝑇T𝑀 (𝑧,𝑤)𝑊𝑀 ( 𝑓 , 𝑔) (𝑥, 𝜔) ,

where

T𝑀 (𝑧, 𝑤) =
(
(1/2) (𝑧1 + 𝑤1) + 𝑀 (𝑤1 − 𝑧1)
(1/2) (𝑧2 + 𝑤2) + 𝑀 (𝑧2 − 𝑤2)

)
=

1
2
(𝑧 + 𝑤) +

(
−𝑀 0
0 𝑀

)
(𝑧 − 𝑤) .

Alternatively, adopting the affine representation of 𝐴 (35):

(39) 𝑃𝑇 =

(
−𝑇 0
0 −(𝐼 − 𝑇)

)
, 𝐼 + 𝑃𝑇 =

(
𝐼 − 𝑇 0

0 𝑇

)
,
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we can also write

(40) T𝑇 (𝑧, 𝑤) =
(
(𝐼 − 𝑇)𝑧1 + 𝑇𝑤1
𝑇𝑧2 + (𝐼 − 𝑇)𝑤2

)
= (𝐼 + 𝑃𝑇 ) 𝑧 − 𝑃𝑇𝑤.

Boundedness on modulation spaces. We cite here some results on the
continuity of the distributions B𝐴𝑀

on the aforementioned spaces. For the
sake of clarity, we report a simplified, unweighted form of [11, Thm. 4.12].

Theorem 3.23. Let 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R) be a Cohen-type matrix. Let
1 ≤ 𝑝𝑖, 𝑞𝑖, 𝑝, 𝑞 ≤ ∞, 𝑖 = 1, 2, such that

(41) 𝑝𝑖, 𝑞𝑖 ≤ 𝑞, 𝑖 = 1, 2,

and

(42)
1
𝑝1
+ 1
𝑝2
≥ 1

𝑝
+ 1
𝑞
,

1
𝑞1
+ 1
𝑞2
≥ 1

𝑝
+ 1
𝑞
.

(i) If 𝑓1 ∈ 𝑀 𝑝1,𝑞1 (R𝑑) and 𝑓2 ∈ 𝑀 𝑝2,𝑞2 (R𝑑), then 𝑊𝑇 ( 𝑓1, 𝑓2) ∈
𝑀 𝑝,𝑞

(
R2𝑑 ) , and the following estimate holds:

∥𝑊𝑇 ( 𝑓1, 𝑓2)∥𝑀 𝑝,𝑞 ≲𝑇 ∥ 𝑓1∥𝑀 𝑝1 ,𝑞1 ∥ 𝑓2∥𝑀 𝑝2 ,𝑞2 .

(ii) Assume further that both 𝑇 and 𝐼 − 𝑇 are invertible (equivalently:
𝐴𝑇 is right-regular, or 𝑃𝑇 is invertible, cf. (39)). If 𝑓1 ∈ 𝑀 𝑝1,𝑞1 (R𝑑)
and 𝑓2 ∈ 𝑀 𝑝2,𝑞2 (R𝑑), then 𝑊𝑇 ( 𝑓1, 𝑓2) ∈ 𝑊 (F 𝐿𝑝, 𝐿𝑞)

(
R2𝑑 ) , and

the following estimate holds:

∥𝑊𝑇 ( 𝑓1, 𝑓2)∥𝑊 (F 𝐿𝑝 ,𝐿𝑞) ≲𝑇 (𝐶𝑇 )1/𝑞−1/𝑝 ∥ 𝑓1∥𝑀 𝑝1 ,𝑞1 ∥ 𝑓2∥𝑀 𝑝2 ,𝑞2 ,

where

(43) 𝐶𝑇 = |det𝑇 | |det (𝐼 − 𝑇) | > 0.

Sharp estimates and continuity results of this type have been given by
some of the authors for the case of 𝜏-Wigner distributions in [16, Lem. 3.1]
and [15].

To conclude this section we remark that one can specialize Proposition
3.9 in order to characterize the boundedness on Lebesgue spaces at the price
of assuming right-regularity of 𝐴𝑀 , see [11, Thm. 4.14].

4. Pseudodifferential operators

In this section we discuss the formalism of pseudodifferential operators
that is associated with every time-frequency representationB𝐴. Imitating the
time-frequency analysis of Weyl pseudodifferential operators, we introduce
the following general calculus for pseudodifferential operators.
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Theorem 4.1 ([1, Prop. 2.2.1]). Let 𝐴 ∈ GL (2𝑑,R) and 𝜎 ∈ 𝑀∞
(
R2𝑑 ) .

The mapping op𝐴 (𝜎) ≡ 𝜎𝐴 defined by duality as〈
𝜎𝐴 𝑓 , 𝑔

〉
≡ ⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩ , 𝑓 , 𝑔 ∈ 𝑀1(R𝑑)

is a well-defined linear continuous map from 𝑀1(R𝑑) to 𝑀∞(R𝑑).

The proof easily follows from the continuity of the distribution B𝐴 :
𝑀1(R𝑑) × 𝑀1(R𝑑) → 𝑀1(R2𝑑), from Proposition 3.2.

Definition 4.2. Let 𝐴 ∈ GL (2𝑑,R) and 𝜎 ∈ 𝑀∞
(
R2𝑑 ) . The mapping

defined in Theorem 4.1, namely

𝜎𝐴 : 𝑀1(R𝑑) ∋ 𝑓 ↦→ 𝜎𝐴 𝑓 ∈ 𝑀∞(R𝑑) :
〈
𝜎𝐴 𝑓 , 𝑔

〉
= ⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩ , ∀𝑔 ∈ 𝑀1(R𝑑),

is called quantization rule with symbol 𝜎 associated with the matrix-Wigner
distributionB𝐴or pseudodifferential operator with symbol𝜎 associated with
the matrix-Wigner distribution B𝐴.

Using Feichtinger’s kernel theorem (Theorem 2.4), we now provide a
number of equivalent representations for 𝜎𝐴 𝑓 .

Theorem 4.3. Let 𝐴 ∈ GL (2𝑑,R). Let 𝑇 : 𝑀1(R𝑑) → 𝑀∞(R𝑑) be a
continuous linear operator. There exist distributions 𝑘, 𝜎, 𝐹 ∈ 𝑀∞

(
R2𝑑 )

such that 𝑇 admits the following representations:

(1) as an integral operator with kernel 𝑘: ⟨𝑇 𝑓 , 𝑔⟩ =
〈
𝑘, 𝑔 ⊗ 𝑓

〉
for any

𝑓 , 𝑔 ∈ 𝑀1(R𝑑);
(2) as pseudodifferential operator with symbol 𝜎 associated with B𝐴:

𝑇 = 𝜎𝐴;
(3) as a superposition (in weak sense) of time-frequency shifts (also

called spreading representation):

𝑇 =

∬
R2𝑑

𝐹 (𝑥, 𝜔) 𝑇𝑥𝑀𝜔𝑑𝑥𝑑𝜔.

The relations among 𝑘, 𝜎, 𝐹 and 𝐴 are the following:

(44) 𝜎 = |det 𝐴| F2𝔗𝐴𝑘, 𝐹 = F2𝔗𝐴𝑆𝑇
𝑘.

Proof. The first representation is exactly the claim of kernel theorem. Now
set 𝜎 = |det 𝐴| F2𝔗𝐴𝑘 ∈ 𝑀∞

(
R2𝑑 ): this is a well-defined distribution,

since F2 and 𝔗𝐴 are isomorphisms on 𝑀∞
(
R2𝑑 ) . In particular, for any
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𝑓 , 𝑔 ∈ 𝑀1(R𝑑) we have

⟨𝑇 𝑓 , 𝑔⟩ =
〈
𝑘, 𝑔 ⊗ 𝑓

〉
=

〈
|det 𝐴|−1 𝔗−1

𝐴 F
−1

2 𝜎, 𝑔 ⊗ 𝑓

〉
=

〈
𝜎, F2𝔗𝐴

(
𝑔 ⊗ 𝑓

)〉
= ⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩
=

〈
𝜎𝐴 𝑓 , 𝑔

〉
.

This proves that 𝑇 𝑓 = 𝜎𝐴 𝑓 in 𝑀∞(R𝑑). The relation between the kernel
representation in 1 and the spreading representation in 3 is well-known,
e.g. [26]. It can also be deduced from item 2 from the special matrix

𝐴𝑆𝑇 =

(
0 𝐼

−𝐼 𝐼

)
and

⟨𝑇 𝑓 , 𝑔⟩ =
〈
𝐹,𝑉 𝑓 𝑔

〉
=

〈
𝐹,B𝐴𝑆𝑇

(𝑔, 𝑓 )
〉
, 𝑓 , 𝑔 ∈ 𝑀1(R𝑑).

□

Remark 4.4. Since 𝑘 = |det 𝐴|−1 𝔗𝐴−1F −1
2 𝜎 = |det 𝐴|−1 𝔗I2𝐴−1F −1

1 �̂�, one
can formally obtain another representation of the third type with a special
spreading function:
(45)
𝜎𝐴 𝑓 (𝑥) = 1

|det 𝐴|

∫
R2𝑑

�̂�(b,−(𝐴−1)21𝑥−(𝐴−1)22𝑦)𝑒2𝜋𝑖b ·[(𝐴−1)11𝑥+(𝐴−1)22𝑦] 𝑓 (𝑦)𝑑b𝑑𝑦.

Notice that the inverse of a Cohen-type matrix 𝐴 = 𝐴𝑇 has the form

𝐴−1
𝑇 =

(
−(𝐼 − 𝑇) 𝑇

𝐼 −𝐼

)
,

thus the previous formula becomes

(46) 𝜎𝐴 𝑓 (𝑥) =
∫
R2𝑑

�̂�(b, 𝑢)𝑒−2𝜋𝑖(𝐼−𝑇)𝑢·b𝑇−𝑢𝑀b 𝑓 (𝑥)𝑑b𝑑𝑢.

This should be compared with [26, Eq. 14.14] and [15, Eq. 20].

We now study the relations among pseudodifferential operators associated
with MWDs and the corresponding symbols.

Proposition 4.5. Let 𝐴, 𝐵 ∈ GL (2𝑑,R) and 𝜎, 𝜌 ∈ 𝑀∞
(
R2𝑑 ) . Then,

𝜎𝐴 = 𝜌𝐵 ⇐⇒ 𝜎 =
|det 𝐴|
|det 𝐵 | F2𝔗𝐵−1𝐴F −1

2 𝜌



26DOMINIK BAYER, ELENA CORDERO, KARLHEINZ GRÖCHENIG, AND S. IVAN TRAPASSO

Proof. Assume that 𝑇 = 𝜎𝐴 = 𝜌𝐵. According to Theorem 4.3, 𝑇 has a
distributional kernel 𝑘 such that

𝜎 = |det 𝐴| F2𝔗𝐴𝑘, 𝜌 = |det 𝐵 | F2𝔗𝐵𝑘.

Therefore,

𝜎 = |det 𝐴| F2𝔗𝐴𝑘

=
|det 𝐴|
|det 𝐵 | F2𝔗𝐴𝔗

−1
𝐵 F −1

2 𝜌

=
|det 𝐴|
|det 𝐵 | F2𝔗𝐵−1𝐴F −1

2 𝜌.

On the other side, if 𝜎 = |det 𝐴| |det 𝐵 |−1 F2𝔗𝐵−1𝐴F −1
2 𝜌, then for any 𝑓 , 𝑔 ∈

𝑀1(R𝑑)〈
𝜎𝐴 𝑓 , 𝑔

〉
= ⟨𝜎, F2𝔗𝐴 ( 𝑓 ⊗ 𝑔)⟩
=

〈
|det 𝐴| |det 𝐵 |−1 F2𝔗𝐴𝔗

−1
𝐵 F −1

2 𝜌, F2𝔗𝐴 ( 𝑓 ⊗ 𝑔)
〉

= ⟨𝜌, F2𝔗𝐵 ( 𝑓 ⊗ 𝑔)⟩
=

〈
𝜌𝐵 𝑓 , 𝑔

〉
.

□

When the operators are associated with Cohen-type matrices, we have a
more explicit relation that covers the usual rule for 𝜏-Shubin operators (cf.
[41, Rem. 1.5]). The proof is a straightforward application of (37).

Proposition 4.6. Let 𝐴1 = 𝐴𝑇1 , 𝐴2 = 𝐴𝑇2 be Cohen-type invertible matrices,
and 𝜎, 𝜌 ∈ 𝑀∞

(
R2𝑑 ) . Then,

𝜎
𝑇1
1 = 𝜎

𝑇2
2 ⇐⇒ 𝜎2 (b, [) = 𝑒−2𝜋𝑖b ·(𝑇2−𝑇1)[𝜎1 (b, [) .

It is also interesting to characterize the matrices yielding self-adjoint
operators.

Proposition 4.7 ([1, Prop. 2.2.3]). Let 𝐴 ∈ GL (2𝑑,R) and 𝜎 ∈ 𝑀∞
(
R2𝑑 ) .

Then (
𝜎𝐴

)∗
= 𝜌𝐵,

where

𝜌 = 𝜎, 𝐵 = 𝐼 𝐴I2 =

(
𝐴21 −𝐴22
𝐴11 −𝐴12

)
.

In particular, 𝜎𝐴 is self-adjoint if and only if 𝜎 = 𝜎 (real symbol) and
𝐵 = 𝐴, hence

𝐴21 = 𝐴11, 𝐴12 = −𝐴22.
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Remark 4.8. Thus, only matrices of the form
(
𝑃 𝑄

𝑃 −𝑄

)
, with 𝑃,𝑄 ∈

GL (𝑑,R), give rise to pseudodifferential operators which are self-adjoint
for real symbols. This occurs for Weyl calculus but not for Kohn-Nirenberg
operators (𝑇 = 0).

4.1. Boundedness results.

4.1.1. Operators on Lebesgue spaces. The boundedness of a pseudodiffer-
ential operator 𝜎𝐴 associated with B𝐴 is intimately related to the bounded-
ness of the distribution B𝐴 on certain function spaces, in view of the duality
in the definition of 𝜎𝐴. Let us start this section with two easy results.

Proposition 4.9 ([1, Theorems 2.2.6, 2.2.7 and 2.2.9]). Let 𝐴 ∈ GL (2𝑑,R)
and 𝜎 ∈ 𝑀∞

(
R2𝑑 ) .

(1) If 𝐴 is right-regular and 𝜎 ∈ 𝐿1 (
R2𝑑 ) , then 𝜎𝐴 is a bounded

operator on 𝐿2(R𝑑) such that𝜎𝐴

𝐿2→𝐿2 ≤

∥𝜎∥𝐿1

|det 𝐴12 |1/2 |det 𝐴22 |1/2
.

(2) If 𝜎 ∈ 𝐿2 (
R2𝑑 ) , then 𝜎𝐴 is a bounded operator on 𝐿2(R𝑑) such that𝜎𝐴


𝐿2→𝐿2 ≤

∥𝜎∥𝐿2

|det 𝐴|1/2
.

If 𝜎 ∈ 𝐿2 (
R2𝑑 ) , then 𝜎𝐴 is actually a Hilbert-Schmidt operator, and

every Hilbert-Schmidt operator 𝑇 possesses a symbol 𝜎 ∈ 𝐿2(R2𝑑) such
that 𝑇 = 𝜎𝐴.

The study on Lebesgue spaces can be largely expanded thanks to the
following result.

Theorem 4.10. Let 𝐴 ∈ GL (2𝑑,R) be right-regular and 𝜎 ∈ 𝐿𝑞
(
R2𝑑 ) .

The quantization mapping

𝜎 ∈ 𝐿𝑞 (R2𝑑) ↦→ 𝜎𝐴 ∈ L
(
𝐿𝑝 (R𝑑)

)
is continuous if and only if 𝑞 ≤ 2 and 𝑞 ≤ 𝑝 ≤ 𝑞′, with norm estimate𝜎𝐴


𝐿𝑝→𝐿𝑝 ≤

∥𝜎∥𝐿𝑞

|det 𝐴|
1
𝑞′ |det 𝐴12 |

1
𝑝
− 1

𝑞′ |det 𝐴22 |
1
𝑝′−

1
𝑞′
.
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Proof. Assume 𝑓 ∈ 𝐿𝑝 (R𝑑) and 𝑔 ∈ 𝐿𝑝′ (R𝑑), with 𝑝 ≠ 1 nor 𝑝 ≠ ∞.
Therefore, by (24) (switch 𝑞 and 𝑞′) and Hölder inequality:��〈𝜎𝐴 𝑓 , 𝑔

〉�� = |⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩|
≤ ∥𝜎∥𝐿𝑞 ∥B𝐴 (𝑔, 𝑓 )∥𝐿𝑞′

≤ ∥𝜎∥𝐿𝑞

|det 𝐴|
1
𝑞′ |det 𝐴12 |

1
𝑝
− 1

𝑞′ |det 𝐴22 |
1
𝑝′−

1
𝑞′
∥ 𝑓 ∥𝐿𝑝 ∥𝑔∥𝐿𝑝′ .

The non-continuity is a consequence of [4, Prop. 3.2]. □

Remark 4.11. Note that the closed graph theorem implies non-continuity
of the quantization map. This means that there exists a symbol 𝜎 ∈ 𝐿𝑞 for
which the operator 𝜎𝐴 is not bounded on 𝐿𝑝 (R2𝑑), cf. [4, Prop. 3.4].

One could also study compactness and Schatten class properties for these
operators. We confine ourselves to prove a result for symbols in the Fe-
ichtinger algebra.
Theorem 4.12 ([1, Thm. 2.2.8]). Let 𝐴 ∈ GL (2𝑑,R) and 𝜎 ∈ 𝑀1 (

R2𝑑 ) .
The operator 𝜎𝐴 ∈ L

(
𝐿2(R𝑑)

)
belongs to the trace class𝔖1 (

𝐿2(R𝑑)
)
, and

the following estimate holds for the trace class norm:𝜎𝐴

𝔖1 ≲ |det 𝐴|1/2 ∥𝜎∥𝑀1 .

Proof. The proof follows the outline of [25]. Proposition 4.9 immediately
yields 𝜎𝐴 ∈ L

(
𝐿2(R𝑑)

)
, since 𝑀1 (

R2𝑑 ) ⊆ 𝐿1 (
R2𝑑 ) ∩ 𝐿2 (

R2𝑑 ) . In line
with the paradigm of time-frequency analysis of operators (cf. [26, Sec.
14.5]), let us decompose the action of 𝜎𝐴 into elementary pseudodifferential
operators with time-frequency shifts of a suitable function as symbols. The
inversion formula for the STFT allows to write

𝜎 =

∫
R2𝑑

∫
R2𝑑

𝑉Φ𝜎 (𝑧, Z) 𝑀Z𝑇𝑧Φ𝑑𝑧𝑑Z,

for any window function Φ ∈ 𝑀1 (
R2𝑑 ) with ∥Φ∥𝐿2 = 1. Therefore, for any

𝑓 , 𝑔 ∈ 𝑀1(R𝑑):〈
𝜎𝐴 𝑓 , 𝑔

〉
= ⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩

=

∫
R2𝑑

∫
R2𝑑

𝑉Φ𝜎 (𝑧, Z)
〈
𝑀Z𝑇𝑧Φ,B𝐴 (𝑔, 𝑓 )

〉
𝑑𝑧𝑑Z

=

∫
R2𝑑

∫
R2𝑑

𝑉Φ𝜎 (𝑧, Z)
〈(
𝑀Z𝑇𝑧Φ

) 𝐴
𝑓 , 𝑔

〉
𝑑𝑧𝑑Z .

This shows that 𝜎𝐴 acts (in an operator-valued sense on 𝐿2) as a continuous
weighted superposition of elementary operators:

𝜎𝐴 =

∫
R2𝑑

∫
R2𝑑

𝑉Φ𝜎 (𝑧, Z)
(
𝑀Z𝑇𝑧Φ

) 𝐴
𝑑𝑧𝑑Z .
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The action of the building blocks
(
𝑀Z𝑇𝑧Φ

) 𝐴 can be unwrapped by means of
the magic formula (28) provided one takes Φ = B𝐴𝜑 for some 𝜑 ∈ 𝑀1(R𝑑)
with ∥𝜑∥𝐿2 = |det 𝐴|1/4 (see the orthogonality relations (25)):〈(

𝑀Z𝑇𝑧Φ
) 𝐴

𝑓 , 𝑔

〉
=

〈
𝑀Z𝑇𝑧Φ,B𝐴 (𝑔, 𝑓 )

〉
= 𝑉B𝐴𝜑B𝐴 (𝑔, 𝑓 ) (𝑧, Z)
= 𝑒2𝜋𝑖𝑧2·Z2𝑉𝜑 𝑓 (𝑏, 𝛽)𝑉𝜑𝑔 (𝑎, 𝛼),

where 𝑎, 𝛼, 𝑏, 𝛽 are continuous functions of 𝑧 and Z . In particular, we have(
𝑀Z𝑇𝑧Φ

) 𝐴 : 𝐿2(R𝑑) → 𝐿2(R𝑑) : 𝑓 ↦→ 𝑒2𝜋𝑖𝑧2·Z2
〈
𝑓 , 𝑀𝛽𝑇𝑏𝜑

〉
𝑀𝛼𝑇𝑎,

hence
(
𝑀Z𝑇𝑧Φ

) 𝐴 is a rank-one operator with trace class norm given by(𝑀Z𝑇𝑧Φ
) 𝐴

𝔖1
= ∥𝜑∥2

𝐿2 = |det 𝐴|1/2, independent of 𝑧, Z . To conclude, we
reconstruct the operator 𝜎𝐴 and compute its norm by means of the estimates
for the pieces:𝜎𝐴


𝔖1 ≤

∫
R2𝑑

∫
R2𝑑
|𝑉Φ𝜎 (𝑧, Z) |

(𝑀Z𝑇𝑧Φ
) 𝐴

𝔖1
𝑑𝑧𝑑Z ≤ 𝐶𝐴 ∥𝜎∥𝑀1 .

□

4.1.2. Operators on modulation spaces. We now study the boundedness on
modulation spaces of pseudodifferential operators associated with Cohen-
type representations.
Theorem 4.13 (Symbols in 𝑀 𝑝,𝑞). Let 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R) be a Cohen-
type matrix and consider indices 1 ≤ 𝑝, 𝑝1, 𝑝2, 𝑞, 𝑞1, 𝑞2 ≤ ∞, satisfying the
following relations:

𝑝1, 𝑝
′
2, 𝑞1, 𝑞

′
2 ≤ 𝑞′,

and
1
𝑝1
+ 1
𝑝′2
≥ 1

𝑝′
+ 1
𝑞′
,

1
𝑞1
+ 1
𝑞′2
≥ 1

𝑝′
+ 1
𝑞′
.

For any 𝜎 ∈ 𝑀 𝑝,𝑞
(
R2𝑑 ) , the pseudodifferential operator 𝜎𝐴 is bounded

from 𝑀 𝑝1,𝑞1 (R𝑑) to 𝑀 𝑝2,𝑞2 (R𝑑). In particular,𝜎𝐴

𝑀 𝑝1 ,𝑞1→𝑀 𝑝2 ,𝑞2 ≲𝐴 ∥𝜎∥𝑀 𝑝,𝑞 .

Proof. Under the given assumptions on the indices, Theorem 3.23 implies
that B𝐴𝑇

(𝑔, 𝑓 ) ∈ 𝑀 𝑝′,𝑞′ (R𝑑) for any 𝑓 ∈ 𝑀 𝑝1,𝑞1 (R𝑑) and 𝑔 ∈ 𝑀 𝑝′2,𝑞
′
2 (R𝑑).

Therefore, by the duality of modulation spaces we obtain��〈𝜎𝐴 𝑓 , 𝑔
〉�� = |⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩|
≤ ∥𝜎∥𝑀 𝑝,𝑞

B𝐴𝑀
(𝑔, 𝑓 )


𝑀 𝑝′,𝑞′

≲𝐴 ∥𝜎∥𝑀 𝑝,𝑞 ∥ 𝑓 ∥𝑀 𝑝1 ,𝑞1 ∥𝑔∥𝑀 𝑝2 ,𝑞2 .
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□

For symbols in 𝑊 (F 𝐿𝑝, 𝐿𝑞) spaces, we can extend [16, Thm. 1.1] to the
matrix setting.

Theorem 4.14 (Symbols in 𝑊 (F 𝐿𝑝, 𝐿𝑞)). Let 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R) a
right-regular Cohen-type matrix and consider indices 1 ≤ 𝑝, 𝑞, 𝑟1, 𝑟2 ≤ ∞,
satisfying the following relations:

𝑞 ≤ 𝑝′, 𝑟1, 𝑟
′
1, 𝑟2, 𝑟

′
2 ≤ 𝑝.

For any 𝜎 ∈ 𝑊 (F 𝐿𝑝, 𝐿𝑞)
(
R2𝑑 ) , the pseudodifferential operator 𝜎𝐴 is

bounded on 𝑀𝑟1,𝑟2 (R𝑑); in particular,𝜎𝐴

𝑀𝑟1 ,𝑟2→𝑀𝑟1 ,𝑟2 ≲𝐴 ∥𝜎∥𝑊 (F 𝐿𝑝 ,𝐿𝑞) .

Proof. We isolate two special cases of Theorem 3.23. First, for any 𝑓 ∈
𝑀 𝑝1,𝑝2 (R𝑑) and 𝑔 ∈ 𝑀 𝑝′1,𝑝

′
2 (R𝑑) we have

∥𝑊𝑇 (𝑔, 𝑓 )∥𝑊 (F 𝐿1,𝐿∞) ≲𝑇 ∥ 𝑓 ∥𝑀 𝑝1 , 𝑝2 ∥𝑔∥𝑀 𝑝′1 , 𝑝
′
2
, 1 ≤ 𝑝1, 𝑝2 ≤ ∞.

This yields that 𝜎𝐴 is bounded on 𝑀 𝑝1,𝑝2 (R𝑑), for any 1 ≤ 𝑝1, 𝑝2 ≤ ∞ and
that the symbol 𝜎 is in 𝑊

(
F 𝐿∞, 𝐿1) (

R2𝑑 ) , because��〈𝜎𝐴 𝑓 , 𝑔
〉�� = |⟨𝜎,𝑊𝑇 (𝑔, 𝑓 )⟩|
≤ ∥𝜎∥𝑊 (F 𝐿∞,𝐿1) ∥𝑊𝑇 (𝑔, 𝑓 )∥𝑊 (F 𝐿1,𝐿∞)
≲𝑇 ∥𝜎∥𝑊 (F 𝐿∞,𝐿1) ∥ 𝑓 ∥𝑀 𝑝1 , 𝑝2 ∥𝑔∥𝑀 𝑝′1 , 𝑝

′
2
.

The second case requires 𝑓 , 𝑔 ∈ 𝑀2(R𝑑), then
∥𝑊𝑇 (𝑔, 𝑓 )∥𝑊 (F 𝐿2,𝐿2) ≲𝑇 ∥ 𝑓 ∥𝑀2 ∥𝑔∥𝑀2 .

If 𝜎 ∈ 𝑊
(
F 𝐿2, 𝐿2) (

R2𝑑 ) = 𝐿2(R2𝑑), then 𝜎𝐴 is bounded on 𝑀2(R𝑑) =
𝐿2(R𝑑) by similar arguments:𝜎𝐴


𝑀2→𝑀2 ≲𝑇 ∥𝜎∥𝑊 (F 𝐿2,𝐿2) .

We proceed now by complex interpolation of the continuous mapping
op𝐴 on modulation spaces; in particular, we are dealing with

op𝐴 : 𝑊

(
F 𝐿1, 𝐿∞

) (
R2𝑑

)
× 𝑀 𝑝1,𝑝2 (R𝑑) → 𝑀 𝑝1,𝑝2 (R𝑑),

op𝐴 : 𝑊

(
F 𝐿2, 𝐿2

) (
R2𝑑

)
× 𝑀2(R𝑑) → 𝑀2(R𝑑).

For \ ∈ [0, 1], we have[
𝑊

(
F 𝐿1, 𝐿∞

)
,𝑊

(
F 𝐿2, 𝐿2

)]
\
= 𝑊

(
F 𝐿𝑝, 𝐿𝑝′

)
, 2 ≤ 𝑝 ≤ ∞,[

𝑀 𝑝1,𝑝2 , 𝑀2,2]
\
= 𝑀𝑟1,𝑟2 ,
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with
1
𝑟𝑖

=
1 − \
𝑝𝑖
+ \

2
=

1 − \
𝑝𝑖
+ 1
𝑝
, 𝑖 = 1, 2.

From these estimates we immediately derive the condition 𝑟1, 𝑟
′
1, 𝑟2, 𝑟

′
2 ≤ 𝑝.

The inclusion relations for modulation spaces allow to extend the result to
𝑊 (F 𝐿𝑝, 𝐿𝑞)

(
R2𝑑 ) for any 𝑞 ≤ 𝑝′. Finally, exchanging the role of 𝑝 and 𝑝′

allows us to cover any 𝑝 ∈ [1,∞]. □

4.2. Symbols in the Sjöstrand class. Another important space of symbols
is the Sjöstrand class. It has been introduced by Sjöstrand [40] to extend the
well-behaved Hörmander class 𝑆0

0,0 and later recognized to coincide with the
modulation space 𝑀∞,1(R2𝑑). Accordingly, it consists of bounded symbols
with low regularity in general, namely temperate distributions 𝜎 ∈ S′(R2𝑑)
such that ∫

R2𝑑
sup
𝑧∈R2𝑑

|⟨𝜎, 𝜋(𝑧, Z)𝑔⟩|𝑑Z < ∞.

Nevertheless, they lead to 𝐿2-bounded pseudodifferential operators. In
fact, much more is true: the family of Weyl operators with symbols in the
Sjöstrand class is an inverse-closed Banach *-subalgebra of L(𝐿2) (R𝑑), in
the following sense.
Theorem 4.15.
(𝑖) (Boundedness) If 𝜎 ∈ 𝑀∞,1

(
R2𝑑 ) , then opW(𝜎) is a bounded op-

erator on 𝐿2(R𝑑).
(𝑖𝑖) (Algebra property) If𝜎1, 𝜎2 ∈ 𝑀∞,1

(
R2𝑑 ) and opW(𝜌) = opW(𝜎1)opW(𝜎2),

then 𝜌 ∈ 𝑀∞,1
(
R2𝑑 ) .

(𝑖𝑖𝑖) (Wiener property) If 𝜎 ∈ 𝑀∞,1
(
R2𝑑 ) and opW(𝜎) is invertible on

𝐿2(R𝑑), then [opW(𝜎)]−1 = opW(𝜌) for some 𝜌 ∈ 𝑀∞,1
(
R2𝑑 ) .

These results have been put into the context of time-frequency analysis in
[29] and have been generalized, see [15, 30, 31]. In this section we extend
Theorem 4.15 with respect to MWDs.

Let us first provide some conditions on the matrices for which the associ-
ated pseudodifferential operators with symbols in 𝑀∞,1(R2𝑑) are bounded
on modulation spaces.

Theorem 4.16 ([1, Thm. 2.3.1]). Let 𝜎 ∈ 𝑀∞,1(R2𝑑) and assume 𝐴 ∈
GL (2𝑑,R) is a left-regular matrix. The pseudodifferential operator 𝜎𝐴 is
bounded on all modulation spaces 𝑀 𝑝,𝑞 (R𝑑), 1 ≤ 𝑝, 𝑞 ≤ ∞, with
(47)𝜎𝐴


𝑀 𝑝,𝑞→𝑀 𝑝,𝑞 ≲𝐴

1
|det 𝐴11 |1/𝑝

′ |det 𝐴21 |1/𝑝
· 1��det(𝐴12)#

��1/𝑞′ ��det(𝐴22)#
��1/𝑞 ∥𝜎∥𝑀∞,1 .
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Proof. Let 𝑓 , 𝑔 ∈ 𝑀1(R𝑑) and Φ ∈ 𝑀1 (
R2𝑑 ) \ {0}. Then,��〈𝜎𝐴 𝑓 , 𝑔

〉�� = |⟨𝜎,B𝐴 (𝑔, 𝑓 )⟩|
= |⟨𝑉Φ𝜎,𝑉ΦB𝐴 (𝑔, 𝑓 )⟩|
≤ ∥𝑉Φ𝜎∥𝐿∞,1 ∥𝑉ΦB𝐴 (𝑔, 𝑓 )∥𝐿1,∞ ,

where in the last line we used Hölder inequality for mixed-norm Lebesgue
spaces. Let us choose for instance Φ = B𝐴𝜑 where 𝜑 ∈ 𝑀1(R𝑑) is the
Gaussian function. We introduce the affine transformations

𝑃Z (𝑧1, 𝑧2) = 𝑃1𝑧+𝑃2Z =

(
𝐴11 0
0 (𝐴12)#

) (
𝑧1
𝑧2

)
+
(

0 −𝐴12
(𝐴11)# 0

) (
Z1
Z2

)
,

𝑄Z (𝑧1, 𝑧2) = 𝑄1𝑧+𝑄2Z =

(
𝐴21 0
0 − (𝐴22)#

) (
𝑧1
𝑧2

)
+
(

0 −𝐴22
− (𝐴21)# 0

) (
Z1
Z2

)
,

in according with the magic formula (28), and using again Hölder’s inequal-
ity we get

∥𝑉ΦB𝐴 (𝑔, 𝑓 )∥𝐿1,∞ = sup
(Z1,Z2)∈R2𝑑

∫
R2𝑑

��𝑉𝜑𝑔
(
𝑃Z (𝑧1, 𝑧2)

) �� ��𝑉𝜑 𝑓
(
𝑄Z (𝑧1, 𝑧2)

) �� 𝑑𝑧1𝑑𝑧2

≤ sup
(Z1,Z2)∈R2𝑑

(𝑉𝜑 𝑓
)
◦𝑄Z


𝐿
𝑝,𝑞
𝑧

(𝑉𝜑𝑔
)
◦ 𝑃Z


𝐿
𝑝′,𝑞′
𝑧

=

𝑉𝜑 𝑓

𝐿𝑝,𝑞

|det 𝐴21 |1/𝑝
��det (𝐴22)#

��1/𝑞
𝑉𝜑𝑔


𝐿𝑝′,𝑞′

|det 𝐴11 |1/𝑝
′ ��det (𝐴12)#

��1/𝑞′
≤ 𝐶

∥ 𝑓 ∥𝑀 𝑝,𝑞

|det 𝐴21 |1/𝑝
��det (𝐴22)#

��1/𝑞 ∥𝑔∥𝑀 𝑝′,𝑞′

|det 𝐴11 |1/𝑝
′ ��det (𝐴12)#

��1/𝑞′ ,
where the constant 𝐶 does not depend on 𝑓 , 𝑔 or 𝐴.

On the other hand,
(48) ∥𝑉Φ𝜎∥𝐿∞,1 ≤ 𝐶Φ ∥𝜎∥𝑀∞,1 ,
where the constant 𝐶Φ depends on Φ = B𝐴𝜑, hence on 𝐴. We conclude by
duality and get the claimed result.

□

Remark 4.17. This result broadly generalizes [26, Thm. 14.5.2] and con-
firms again that the Sjöstrand’s class is a well-suited symbol class leading
to bounded operators on modulation spaces. It is worth to mention that the
left-regularity assumption for 𝐴 covers any Cohen-type matrix 𝐴 = 𝐴𝑀 .

Remark 4.18. Unfortunately, it is not easy to sharpen the estimate (47)
neither in the case of Cohen-type matrices, the main obstruction being the
estimate in (48). The usual strategy consists of finding a suitable alternative
window function Ψ ∈ 𝑀1(R2𝑑) and then estimate ∥𝑉ΨB𝐴𝜙∥𝐿1 , in order to
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apply [26, Lem. 11.3.3] and [26, Prop. 11.1.3(a)]. This require cumbersome
computations even in the case of 𝜏-distributions with Ψ Gaussian function,
but the result is a uniform estimate for any 𝜏 ∈ [0, 1], cf. [16, Lem. 2.3].

We now prove a similar boundedness result on 𝑊 (F 𝐿𝑝, 𝐿𝑞) spaces. We
require a very special case of the symplectic covariance for the Weyl quan-
tization which is stable under matrix perturbations - cf. [15, Lem. 5.1] for
the 𝜏-Wigner case.

Lemma 4.19. For any symbol 𝜎 ∈ 𝑀∞
(
R2𝑑 ) and any Cohen-type matrix

𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R):

F op𝐴𝑇
(𝜎) F −1 = op𝐴𝐼−𝑇

(
𝜎 ◦ 𝐽−1

)
.

Proof. We use a formal argument and leave to the reader the discussion
on the function spaces on which it is well defined. Recall the spreading
representation of the operator op𝐴𝑇

from (46)

op𝐴𝑇
𝑓 (𝑥) =

∫
R2𝑑

�̂� (b, 𝑢) 𝑒−2𝜋𝑖(𝐼−𝑇)𝑢·b𝑇−𝑢𝑀b 𝑓 (𝑥) 𝑑𝑢𝑑b.

Since F𝑇−𝑢𝑀bF −1 = 𝑒2𝜋𝑖𝑢·b𝑇b𝑀𝑢, we obtain

F op𝐴𝑇
F −1 =

∫
R2𝑑

�̂� (b, 𝑢) 𝑒−𝜋𝑖(2𝑇−𝐼)𝑢·b𝑇b𝑀𝑢𝑑𝑢𝑑b

= op𝐴𝐼−𝑇

(
𝜎 ◦ 𝐽−1

)
.

□

Remark 4.20. A comprehensive account of the symplectic covariance for
perturbed representation is out of the scope of this paper. This would
require to investigate how the metaplectic group should be modified in order
to accommodate the perturbations. As a non-trivial example of this issue,
we highlight the contribution of de Gosson in [18] for 𝜏-pseudodifferential
operators.

Theorem 4.21. For any Cohen-type matrix 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R) and any
symbol𝜎 ∈ 𝑀∞,1

(
R2𝑑 ) , the operator opA(𝜎) is bounded on𝑊 (F 𝐿𝑝, 𝐿𝑞) (R𝑑)

with

∥opA(𝜎)∥𝑊 (F 𝐿𝑝 ,𝐿𝑞)→𝑊 (F 𝐿𝑝 ,𝐿𝑞) ≤ 𝐶𝐴∥𝜎∥∞,1𝑀
,

for a suitable 𝐶𝐴 > 0.
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Proof. The proof follows the pattern of [15, Thm. 5.6]. Set 𝜎𝐽 = 𝜎 ◦ 𝐽 and
consider the following commutative diagram:

𝑀 𝑝,𝑞 (R𝑑)
op𝐼−𝑇 (𝜎𝐽 ) // 𝑀 𝑝,𝑞 (R𝑑)

F
��

𝑊 (F 𝐿𝑝, 𝐿𝑞) (R𝑑)
op𝜏 (𝜎)//

F −1

OO

𝑊 (F 𝐿𝑝, 𝐿𝑞) (R𝑑)
From the formula𝑉𝐺 (𝜎𝐽) (𝑧, Z) = 𝑉𝐺◦𝐽−1𝜎(𝐽𝑧, 𝐽Z), for any suitable window
𝐺, it follows easily that 𝜎 ∈ 𝑀∞,1

(
R2𝑑 ) implies 𝜎𝐽 ∈ 𝑀∞,1

(
R2𝑑 ) . The

operator op𝐼−𝑇 (𝜎𝐽) is bounded on 𝑀 𝑝,𝑞 (R𝑑) as a consequence of Theorem
4.16 and the claim follows at once thanks to the previous lemma. □

The significance of the Sjöstrand class as space of symbols comes in
many shapes. In [29] an alternative characterization of the Sjöstrand class
was given in terms of a quasi-diagonalization property satisfied by the Weyl
operators with symbol in 𝑀∞,1. Let us briefly recall the main ingredients
of this result. First, fix a non-zero window 𝜑 ∈ 𝑀1(R𝑑) and a lattice
Λ = 𝐴Z2𝑑 ⊆ R2𝑑 , where 𝐴 ∈ GL(2𝑑,R), such that G (𝜑,Λ) is a Gabor
frame for 𝐿2(R𝑑). The action of pseudodifferential operators on time-
frequency shifts is described by the entries of the so-called channel matrix,
that is

⟨opW(𝜎)𝜋(𝑧)𝜑, 𝜋(𝑤)𝜑⟩, 𝑧, 𝑤 ∈ R2𝑑 ,

or
𝑀 (𝜎)_,` B ⟨opW(𝜎)𝜋(_)𝜑, 𝜋(`)𝜑⟩, _, ` ∈ Λ,

if we restrict to the discrete latticeΛ. We say that opW is almost diagonalized
by the Gabor frame G(𝜑,Λ) if the associated channel matrix exhibits some
sort of off-diagonal decay - equivalently, if the time-frequency shifts are
almost eigenvectors for opW.

Theorem 4.22 ([29]). Let 𝜑 ∈ 𝑀1(R𝑑) (R𝑑) be a non-zero window function
such that G (𝜑,Λ) be a Gabor frame for 𝐿2(R𝑑). The following properties
are equivalent:
(𝑖) 𝜎 ∈ 𝑀∞,1(R2𝑑).
(𝑖𝑖) 𝜎 ∈ 𝑀∞(R2𝑑) and there exists a function 𝐻 ∈ 𝐿1(R2𝑑) such that

|⟨opW (𝜎) 𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑⟩| ≤ 𝐻 (𝑤 − 𝑧) , ∀𝑤, 𝑧 ∈ R2𝑑 .

(𝑖𝑖𝑖) 𝜎 ∈ 𝑀∞
(
R2𝑑 ) and there exists a sequence ℎ ∈ ℓ1 (Λ) such that

|⟨opW (𝜎) 𝜋 (`) 𝜑, 𝜋 (_) 𝜑⟩| ≤ ℎ (_ − `) , ∀_, ` ∈ Λ.

Corollary 4.23. Under the hypotheses of the previous theorem, assume that
𝑇 : 𝑀1(R𝑑) → 𝑀∞(R𝑑) is continuous and satisfies one of the following
conditions:
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(𝑖) |⟨𝑇𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑⟩| ≤ 𝐻 (𝑤 − 𝑧) , ∀𝑤, 𝑧 ∈ R2𝑑 for some 𝐻 ∈ 𝐿1.
(𝑖𝑖) |⟨𝑇𝜋 (`) 𝜑, 𝜋 (_) 𝜑⟩| ≤ ℎ (_ − `) , ∀_, ` ∈ Λ for some ℎ ∈ ℓ1.

Then 𝑇 = opW (𝜎) for some symbol 𝜎 ∈ 𝑀∞,1
(
R2𝑑 ) .

The backbone of this result is the interplay between the entries of the
channel matrix of opW and the short-time Fourier transform of the symbol.
Theorem 4.22 can be extended without difficulty to 𝜏-pseudodifferential op-
erators [15]. We now indicate a further generalization to operators associated
with Cohen-type matrices.

Assume that 𝐴 = 𝐴𝑀 ∈ GL (2𝑑,R) is a matrix of Cohen’s type. The
following result easily follows from the covariance formula (38).

Lemma 4.24. Let 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R) be a matrix of Cohen’s type and
fix a non-zero window 𝜑 ∈ 𝑀1(R𝑑), then set Φ𝐴 = 𝑊𝑇𝜑. Then, for any
𝜎 ∈ 𝑀∞

(
R2𝑑 )��〈𝜎𝐴𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑

〉�� = ��𝑉Φ𝐴
𝜎 (T𝑇 (𝑤, 𝑧) , 𝐽 (𝑤 − 𝑧))

�� = ��𝑉Φ𝐴
𝜎 (𝑥, 𝑦)

�� ,
and ��𝑉Φ𝐴

𝜎 (𝑥, 𝑦)
�� = ��〈𝜎𝐴𝜋 (𝑧 (𝑥, 𝑦)) 𝜑, 𝜋 (𝑤 (𝑥, 𝑦)) 𝜑

〉�� ,
for any 𝑥, 𝑦, 𝑧, 𝑤 ∈ R2𝑑 , where T𝑇 is defined in (40) and
(49) 𝑧 (𝑥, 𝑦) = 𝑥 + (𝐼 + 𝑃𝑇 ) 𝐽𝑦, 𝑤 (𝑥, 𝑦) = 𝑥 + 𝑃𝑇 𝐽𝑦.

Proof. We have��〈𝜎𝐴𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑
〉�� = |⟨𝜎,B𝐴 (𝜋 (𝑤) 𝜑, 𝜋 (𝑧) 𝜑)⟩|
=

��〈𝜎, 𝑀𝐽 (𝑤−𝑧)𝑇T𝑇 (𝑤,𝑧)B𝐴𝜑 (𝑥, 𝜔)
〉��

=
��𝑉Φ𝐴

𝜎 (T𝑇 (𝑤, 𝑧) , 𝐽 (𝑤 − 𝑧))
�� .

Now, setting 𝑥 = T𝑇 (𝑤, 𝑧) and 𝑦 = 𝐽 (𝑤 − 𝑧) we immediately get Eq.
(49). □

Theorem 4.25. Let 𝜑 ∈ 𝑀1(R𝑑) be a non-zero window function and assume
that Λ is a lattice such that G (𝜑,Λ) is a Gabor frame for 𝐿2(R𝑑). For any
Cohen-type matrix 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R), the following properties are
equivalent:
(𝑖) 𝜎 ∈ 𝑀∞,1

(
R2𝑑 ) .

(𝑖𝑖) 𝜎 ∈ 𝑀∞
(
R2𝑑 ) and there exists a function 𝐻 = 𝐻𝑇 ∈ 𝐿1(R𝑑) such

that��〈𝜎𝐴𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑
〉�� ≤ 𝐻𝑇 (𝑤 − 𝑧) , ∀𝑤, 𝑧 ∈ R2𝑑 .

(𝑖𝑖𝑖) 𝜎 ∈ 𝑀∞
(
R2𝑑 ) and there exists a sequence ℎ = ℎ𝑇 ∈ ℓ1 (Λ) such

that��〈𝜎𝐴𝜋 (`) 𝜑, 𝜋 (_) 𝜑
〉�� ≤ ℎ𝑇 (_ − `) , ∀_, ` ∈ R2𝑑 .
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Proof. The proof faithfully mirrors the one for Weyl operators [29, Theorem
3.2]. We detail here only the case (𝑖) ⇒ (𝑖𝑖), the discrete case for ℎ𝑇
is similar. For 𝜑 ∈ 𝑀1(R𝑑) the 𝑇-Wigner distribution Φ𝑇 = 𝑊𝑇𝜑 is
in 𝑀1(R2𝑑) by Theorem 3.23. This implies that the short-time Fourier
transform 𝑉Φ𝑇

𝜎 is well-defined for 𝜎 ∈ 𝑀∞,1
(
R2𝑑 ) (cf. [26, Theorem

11.3.7]). The main insight here is that the controlling function 𝐻𝑇 ∈ 𝐿1(R𝑑)
can be provided by the so-called grand symbol associated with 𝜎, which
is �̃�𝑇 (𝑣) = sup𝑢∈R2𝑑 |𝑉Φ𝑇

𝜎(𝑢, 𝑣) |. By definition of 𝑀∞,1
(
R2𝑑 ) , we have

�̃�𝑇 ∈ 𝐿1(R2𝑑), so that Lemma 4.24 implies��〈𝜎𝐴𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑
〉�� = ��𝑉Φ𝑇

𝜎 (T𝑇 (𝑧, 𝑤) , 𝐽 (𝑤 − 𝑧))
��

≤ sup
𝑢∈R2𝑑

��𝑉Φ𝑇
𝜎 (𝑢, 𝐽 (𝑤 − 𝑧))

��
= �̃�𝑇 (𝐽 (𝑤 − 𝑧)) .

Setting 𝐻𝑇 = �̃�𝑇 ◦ 𝐽 yields the claim. □

Let us further discuss the main trick of the proof. While the choice of the
grand symbol as controlling function is natural in view of the 𝑀∞,1 norm,
the effect of the perturbation matrix𝑇 is confined to the window functionΦ𝑇

and to the time variable of the short-time Fourier transform of the symbol.
A natural question is then the following: what happens if we try to control
the time dependence of 𝑉Φ𝜏

𝜎? Following the pattern of [15, Thm. 4.3],
this remark provides a similar characterization for symbols belonging to the
modulation space 𝑊 (F 𝐿∞, 𝐿1) = F𝑀∞,1.

Theorem 4.26. Let 𝜑 ∈ 𝑀1(R𝑑) be a non-zero window function. For
any right-regular Cohen-type matrix 𝐴 = 𝐴𝑇 ∈ GL (2𝑑,R), the following
properties are equivalent:
(𝑖) 𝜎 ∈ 𝑊 (F 𝐿∞, 𝐿1)

(
R2𝑑 ) .

(𝑖𝑖) 𝜎 ∈ 𝑀∞
(
R2𝑑 ) and there exists a function 𝐻 = 𝐻𝑇 ∈ 𝐿1(R𝑑) such

that��〈𝜎𝐴𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑
〉�� ≤ 𝐻𝑇 (𝑤 −U𝑇 𝑧), ∀𝑤, 𝑧 ∈ R2𝑑 ,

where

U𝑇 = −
(
(𝐼 − 𝑇)−1 𝑇 0

0 𝑇−1 (𝐼 − 𝑇)

)
.

Proof. The proof is a straightforward adjustment of the one provided for [15,
Thm. 4.3]. Again, we detail here only the case (𝑖) ⇒ (𝑖𝑖) for the purpose of
tracking the origin ofU𝑇 . If 𝜙 ∈ 𝑀1(R𝑑), 𝜙 ≠ 0, then Φ𝑇 = 𝑊𝑇𝜙 ∈ 𝑀1 =

𝑊 (F 𝐿1, 𝐿1) by Theorem 3.23. For 𝜎 ∈ 𝑊
(
F 𝐿∞, 𝐿1) , we have that 𝑉Φ𝑇

𝜎
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is well defined and

�̃�𝑇 (𝑥) = sup
𝑦∈R2𝑑

��𝑉Φ𝑇
𝜎 (𝑥, 𝑦)

�� ∈ 𝐿1
(
R2𝑑

)
.

From Lemma 4.24 we infer��〈op𝑇 (𝜎) 𝜋 (𝑧) 𝜑, 𝜋 (𝑤) 𝜑
〉�� = ��𝑉Φ𝑇

𝜎 (T𝑡 (𝑤, 𝑧) , 𝐽 (𝑤 − 𝑧))
��

≤ sup
𝑦∈R2𝑑

��𝑉Φ𝑇
𝜎 (T𝑇 (𝑤, 𝑧) , 𝑦)

��
= �̃�𝑇 (T𝑇 (𝑤, 𝑧)) .

Notice that if 𝐴𝑇 is right-regular, then 𝐼 +𝑃𝑇 from (39) is invertible (and the
converse holds, too). In particular, we have

(𝐼 + 𝑃𝑇 )−1 (T𝑇 (𝑤, 𝑧)) = 𝑤 − (𝐼 + 𝑃𝑇 )−1𝑃𝑇 𝑧 = 𝑤 −U𝜏𝑧,

and thus �̃�𝑇 (T𝑇 (𝑤, 𝑧)) = �̃�𝑇

(
B−1
𝑇
(𝑤 −U𝑇 𝑧)

)
. Define 𝐻𝑇 = �̃�𝑇 ◦ (𝐼 +

𝑃𝑇 )−1; then 𝐻𝑇 ∈ 𝐿1(R2𝑑) since ∥𝐻𝑇 ∥𝐿1 = ∥�̃�𝑇 ◦(𝐼+𝑃𝑇 )−1∥𝐿1 ≍ ∥�̃�𝑇 ∥𝐿1 <

∞. □

Remark 4.27. (i) The almost diagonalization of the (continuous) chan-
nel matrix does not survive the perturbation, but the new result can be
interpreted as a measure of the concentration of the time-frequency
representation of op𝑇 (𝜎) along the graph of the mapU𝑇 .

(ii) We recover [15, Thm. 4.3], where the same problem was first studied
for 𝜏-operators with 𝜏 ∈ (0, 1). One may push further the analogy
and generalize the results for 𝜏 = 0 or 𝜏 = 1.

(iii) As already remarked for 𝜏-operators in [15], the discrete character-
ization via Gabor frames is lost: for a given lattice Λ, the inclusion
U𝜏Λ ⊆ Λ exclusively holds for 𝜏 = 1/2 (the Weyl transform).

(iv) The boundedness and algebraic properties of 𝐴𝑇 -operators with
symbols in 𝑊 (F 𝐿∞, 𝐿1) proved in [15] rely on the characterization
as generalized metaplectic operators according to [12, Def. 1.1].
In order to benefit from this framework, it is necessary forU𝑇 to be
a symplectic matrix, the latter condition being realized if and only
if 𝑇 is a symmetric matrix (cf. [17, (2.4) and (2.5)] and notice that
𝑇−1(𝐼 − 𝑇) = (𝐼 − 𝑇)𝑇−1).
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