20 research outputs found

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Variation of the lateral mobility of transmembrane peptides with hydrophobic mismatch.

    No full text
    A hydrophobic mismatch between protein length and membrane thickness can lead to a modification of protein conformation, function, and oligomerization. To study the role of hydrophobic mismatch, we have measured the change in mobility of transmembrane peptides possessing a hydrophobic helix of various length d(pi) in lipid membranes of giant vesicles. We also used a model system where the hydrophobic thickness of the bilayers, h, can be tuned at will. We precisely measured the diffusion coefficient of the embedded peptides and gained access to the apparent size of diffusing objects. For bilayers thinner than d(pi), the diffusion coefficient decreases, and the derived characteristic sizes are larger than the peptide radii. Previous studies suggest that peptides accommodate by tilting. This scenario was confirmed by ATR-FTIR spectroscopy. As the membrane thickness increases, the value of the diffusion coefficient increases to reach a maximum at h approximately = d(pi). We show that this variation in diffusion coefficient is consistent with a decrease in peptide tilt. To do so, we have derived a relation between the diffusion coefficient and the tilt angle, and we used this relation to derive the peptide tilt from our diffusion measurements. As the membrane thickness increases, the peptides raise (i.e. their tilt is reduced) and reach an upright position and a maximal mobility for h approximately = d(pi). Using accessibility measurements, we show that when the membrane becomes too thick, the peptide polar heads sink into the interfacial region. Surprisingly, this "pinching" behavior does not hinder the lateral diffusion of the transmembrane peptides. Ultimately, a break in the peptide transmembrane anchorage is observed and is revealed by a "jump" in the D values.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore