696 research outputs found

    gCSP: A Graphical Tool for Designing CSP systems

    Get PDF
    For broad acceptance of an engineering paradigm, a graphical notation and a supporting design tool seem necessary. This paper discusses certain issues of developing a design environment for building systems based on CSP. Some of the issues discussed depend specifically on the underlying theory of CSP, while a number of them are common for any graphical notation and supporting tools, such as provisions for complexity management and design overview

    SUM’20: State-based user modelling

    Get PDF
    Capturing and effectively utilising user states and goals is becoming a timely challenge for successfully leveraging intelligent and usercentric systems in differentweb search and data mining applications. Examples of such systems are conversational agents, intelligent assistants, educational and contextual information retrieval systems, recommender/match-making systems and advertising systems, all of which rely on identifying the user state in order to provide the most relevant information and assist users in achieving their goals. There has been, however, limited work towards building such state-aware intelligent learning mechanisms. Hence, devising information systems that can keep track of the user's state has been listed as one of the grand challenges to be tackled in the next few years [1]. It is thus timely to organize a workshop that re-visits the problem of designing and evaluating state-aware and user-centric systems, ensuring that the community (spanning academic and industrial backgrounds) works together to tackle these challenges

    Characterisation of cardiac health in the reduced uterine perfusion pressure model and a 3D cardiac spheroid model, of preeclampsia

    Full text link
    BACKGROUND: Preeclampsia is a dangerous cardiovascular disorder of pregnancy that leads to an increased risk of future cardiovascular and metabolic disorders. Much of the pathogenesis and mechanisms involved in cardiac health in preeclampsia are unknown. A novel anti-angiogenic protein, FKBPL, is emerging as having a potential role in both preeclampsia and cardiovascular disease (CVD). Therefore, in this study we aimed to characterise cardiac health and FKBPL regulation in the rat reduced uterine perfusion pressure (RUPP) and a 3D cardiac spheroid model of preeclampsia. METHODS: The RUPP model was induced in pregnant rats and histological analysis performed on the heart, kidney, liver and placenta (n ≥ 6). Picrosirius red staining was performed to quantify collagen I and III deposition in rat hearts, placentae and livers as an indicator of fibrosis. RT-qPCR was used to determine changes in Fkbpl, Icam1, Vcam1, Flt1 and Vegfa mRNA in hearts and/or placentae and ELISA to evaluate cardiac brain natriuretic peptide (BNP45) and FKBPL secretion. Immunofluorescent staining was also conducted to analyse the expression of cardiac FKBPL. Cardiac spheroids were generated using human cardiac fibroblasts and human coronary artery endothelial cells and treated with patient plasma from normotensive controls, early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE); n = 3. FKBPL and CD31 expression was quantified by immunofluorescent labelling. RESULTS: The RUPP procedure induced significant increases in blood pressure (p < 0.001), collagen deposition (p < 0.001) and cardiac BNP45 (p < 0.05). It also induced a significant increase in cardiac FKBPL mRNA (p < 0.05) and protein  expression  (p < 0.01). RUPP placentae also exhibited increased collagen deposition and decreased Flt1 mRNA expression (p < 0.05). RUPP kidneys revealed an increase in average glomerular size (p < 0.05). Cardiac spheroids showed a significant increase in FKBPL expression when treated with LOPE plasma (p < 0.05) and a trend towards increased FKBPL expression following treatment with EOPE plasma (p = 0.06). CONCLUSIONS: The rat RUPP model induced cardiac, renal and placental features reflective of preeclampsia. FKBPL was increased in the hearts of RUPP rats and cardiac spheroids treated with plasma from women with preeclampsia, perhaps reflective of restricted angiogenesis and inflammation in this disorder. Elucidation of these novel FKBPL mechanisms in cardiac health in preeclampsia could be key in preventing future CVD

    Impact of dense-water flow over a sloping bottom on open-sea circulation: Laboratory experiments and an Ionian Sea (Mediterranean) example

    Get PDF
    The North Ionian Gyre (NIG) displays prominent inversions on decadal scales. We investigate the role of internal forcing induced by changes in the horizontal pressure gradient due to the varying density of Adriatic Deep Water (AdDW), which spreads into the deep layers of the northern Ionian Sea. In turn, the AdDW density fluctuates according to the circulation of the NIG through a feedback mechanism known as the bimodal oscillating system. We set up laboratory experiments with a two-layer ambient fluid in a circular rotating tank, where densities of 1000 and 1015ĝ€¯kgĝ€¯m-3 characterize the upper and lower layers, respectively. From the potential vorticity evolution during the dense-water outflow from a marginal sea, we analyze the response of the open-sea circulation to the along-slope dense-water flow. In addition, we show some features of the cyclonic and anticyclonic eddies that form in the upper layer over the slope area. We illustrate the outcome of the experiments of varying density and varying discharge rates associated with dense-water injection. When the density is high (1020ĝ€¯kgĝ€¯m-3) and the discharge is large, the kinetic energy of the mean flow is stronger than the eddy kinetic energy. Conversely, when the density is lower (1010ĝ€¯kgĝ€¯m-3) and the discharge is reduced, vortices are more energetic than the mean flow - that is, the eddy kinetic energy is larger than the kinetic energy of the mean flow. In general, over the slope, following the onset of dense-water injection, the cyclonic vorticity associated with current shear develops in the upper layer. The vorticity behaves in a two-layer fashion, thereby becoming anticyclonic in the lower layer of the slope area. Concurrently, over the deep flat-bottom portion of the basin, a large-scale anticyclonic gyre forms in the upper layer extending partly toward a sloping rim. The density record shows the rise of the pycnocline due to the dense-water sinking toward the flat-bottom portion of the tank. We show that the rate of increase in the anticyclonic potential vorticity is proportional to the rate of the rise of the interface, namely to the rate of decrease in the upper-layer thickness (i.e., the upper-layer squeezing). The comparison of laboratory experiments with the Ionian Sea is made for a situation when the sudden switch from cyclonic to anticyclonic basin-wide circulation took place following extremely dense Adriatic water overflow after the harsh winter in 2012. We show how similar the temporal evolution and the vertical structure are in both laboratory and oceanic conditions. The demonstrated similarity further supports the assertion that the wind-stress curl over the Ionian Sea is not of paramount importance in generating basin-wide circulation inversions compared with the internal forcing

    Artificial Intelligence for Sustainable Development: Synthesis Report, Mobile Learning Week 2019

    Get PDF
    (First paragraph) 2019’s Mobile Learning Week (MLW), UNESCO’s flagship event for information and communication technology (ICT) in education, focused on the theme ‘Artificial Intelligence for Sustainable Development’. Held over five days in Paris, it comprised a sequence of high-profile events (a global conference, a policy forum and workshops, a symposium and strategy labs), and involved more than 1,500 participants from 140 countries (including Ministers of Education and ICT, other representatives from Member States, the private sector, academia and international organizations)

    The Immature Heart: The Roles of Bone Marrow Stromal Stem Cells in Growth and Myocardial Repair

    Get PDF
    Studies have shown that adult bone marrow derived stem cells (MSCs) can participate in repair of myocardial injury in adult hearts, as well as in cardiac growth during fetal development in utero. Yet, no studies have evaluated the role of MSCs with respect to normal growth or tissue repair in immature hearts after birth. The present study examines whether MSCs may participate in the myocardial growth and injury in the post-natal immature hearts. MSCs were isolated from adult Lewis rats and labeled with Lac-Z gene using retroviral vectors. These MSCs were injected systemically into groups of neonatal (NB=2days-old), immature (B=30days-old) and adult (A=>3months-old) isogeneic Lewis rats. Additionally, left coronary artery ligation was carried out in subgroups of immature (BL) and adult (AL) rats one week after MSCs injection. The hearts were harvested serially from 2-days to 6-weeks, stained with X-Gal for labeled MSCs. Cardiomyocyte phenotypic expression was evaluated by immunohistological staining for Troponin I-C and Connexin-43. Labeled MSCs were found to home into the bone marrow in all rats of different developmental stages. They could be recruited from bone marrow into the infarcted site of myocardium only in groups AL and BL. They were also capable of differentiating into cardiomyocyte phenotype after myocardial injury. In contrast to that reported in the developing fetus, MSCs did not appear to contribute to the growth of non-injured hearts after birth. However, they can be recruited from the bone marrow and regenerate damaged myocardium both in the adult and in the immature hearts

    Cardiomyocyte Formation by Skeletal Muscle-Derived Multi-Myogenic Stem Cells after Transplantation into Infarcted Myocardium

    Get PDF
    BACKGROUND: Cellular cardiomyoplasty for myocardial infarction has been developed using various cell types. However, complete differentiation and/or trans-differentiation into cardiomyocytes have never occurred in these transplant studies, whereas functional contributions were reported. METHODS AND RESULTS: Skeletal muscle interstitium-derived CD34(+)/CD45(-) (Sk-34) cells were purified from green fluorescent protein transgenic mice by flowcytometory. Cardiac differentiation of Sk-34 cells was examined by in vitro clonal culture and co-culture with embryonic cardiomyocytes, and in vivo transplantation into a nude rat myocardial infarction (MI) model (left ventricle). Lower relative expression of cardiomyogenic transcription factors, such as GATA-4, Nkx2-5, Isl-1, Mef2 and Hand2, was seen in clonal cell culture. However, vigorous expression of these factors was seen on co-culture with embryonic cardiomyocytes, together with formation of gap-junctions and synchronous contraction following sphere-like colony formation. At 4 weeks after transplantation of freshly isolated Sk-34 cells, donor cells exhibited typical cardiomyocyte structure with formation of gap-junctions, as well as intercalated discs and desmosomes, between donor and recipient and/or donor and donor cells. Fluorescence in situ hybridization (FISH) analysis detecting the rat and mouse genomic DNA and immunoelectron microscopy using anti-GFP revealed donor-derived cells. Transplanted Sk-34 cells were incorporated into infarcted portions of recipient muscles and contributed to cardiac reconstitution. Significant improvement in left ventricular function, as evaluated by transthoracic echocardiography and micro-tip conductance catheter, was also observed. CONCLUSIONS AND SIGNIFICANCE: Skeletal muscle-derived multipotent Sk-34 cells that can give rise to skeletal and smooth muscle cells as reported previously, also give rise to cardiac muscle cells as multi-myogenic stem cells, and thus are a potential source for practical cellular cardiomyoplasty
    corecore