754 research outputs found
Effects of high-energy ionizing particles on the Si:As mid-infrared detector array on board the AKARI satellite
We evaluate the effects of high-energy ionizing particles on the Si:As
impurity band conduction (IBC) mid-infrared detector on board AKARI, the
Japanese infrared astronomical satellite. IBC-type detectors are known to be
little influenced by ionizing radiation. However we find that the detector is
significantly affected by in-orbit ionizing radiation even after spikes induced
by ionizing particles are removed. The effects are described as changes mostly
in the offset of detector output, but not in the gain. We conclude that the
changes in the offset are caused mainly by increase in dark current. We
establish a method to correct these ionizing radiation effects. The method is
essential to improve the quality and to increase the sky coverage of the AKARI
mid-infrared all-sky-survey map.Comment: 16 pages, 8 figures, 1 table, accepted for publication in PAS
High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes
We present the results of high precision measurements of the thermal
expansion of the sintered SiC, SiC-100, intended for use in cryogenic
space-telescopes, in which minimization of thermal deformation of the mirror is
critical and precise information of the thermal expansion is needed for the
telescope design. The temperature range of the measurements extends from room
temperature down to 10 K. Three samples, #1, #2, and #3 were
manufactured from blocks of SiC produced in different lots. The thermal
expansion of the samples was measured with a cryogenic dilatometer, consisting
of a laser interferometer, a cryostat, and a mechanical cooler. The typical
thermal expansion curve is presented using the 8th order polynomial of the
temperature. For the three samples, the coefficients of thermal expansion
(CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were
derived for temperatures between 293 K and 10 K. The average and the dispersion
(1 rms) of these three CTEs are 0.816 and 0.002 (/K),
respectively. No significant difference was detected in the CTE of the three
samples from the different lots. Neither inhomogeneity nor anisotropy of the
CTE was observed. Based on the obtained CTE dispersion, we performed an
finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m
diameter cryogenic mirror made of six SiC-100 segments. It was shown that the
present CTE measurement has a sufficient accuracy well enough for the design of
the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope
for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure
High-spectral resolution observations of the 3.29 micron emission feature: Comparison to QCC and PAHs
Two of the most promising explanations for the origin of the interstellar emission features observed at 3.29, 3.4, 6.2, 7.7, 8.6, and 11.3 microns are: quenched carbonaceous composite (QCC) and polycyclic aromatic hydrocarbons (PAHs). High resolution spectra are given of the 3.29 micron emission feature which were taken with the Cooled Grating Array Spectrometer at the NASA Infrared Telescope Facility and previously published. These spectra show that the peak wavelength of the 3.29 micron feature is located at 3.295 + or - 0.005 micron and that it is coincident with the peak absorbance of QCC. The peak wavelength of the 3.29 micron feature appears to be the same in all of the sources observed thus far. However, the width of the feature in HD 44179 and Elias 1 is only 0.023 micron, which is smaller than the 0.043 micron width in NGC 7027, IRAS 21282+5050, the Orion nebula, and BD+30 deg 3639. Spectra of NGC 7027, QCC, and PAHs is shown. QCC matches the 3.29 micron interstellar emission feature very closely in the wavelength of the peak, and it produces a single feature. On the other hand, PAHs rarely match the peak of the interstellar emission feature, and characteristically produce multiple features
Polarization of Thermal Emission from Aligned Dust Grains Under an Anisotropic Radiation Field
If aspherical dust grains are immersed in an anisotropic radiation field,
their temperature depends on the cross-sections projected in the direction of
the anisotropy.It was shown that the temperature difference produces polarized
thermal emission even without alignment, if the observer looks at the grains
from a direction different from the anisotropic radiation. When the dust grains
are aligned, the anisotropy in the radiation makes various effects on the
polarization of the thermal emission, depending on the relative angle between
the anisotropy and alignment directions. If the both directions are parallel,
the anisotropy produces a steep increase in the polarization degree at short
wavelengths. If they are perpendicular, the polarization reversal occurs at a
wavelength shorter than the emission peak. The effect of the anisotropic
radiation will make a change of more than a few % in the polarization degree
for short wavelengths and the effect must be taken into account in the
interpretation of the polarization in the thermal emission. The anisotropy in
the radiation field produces a strong spectral dependence of the polarization
degree and position angle, which is not seen under isotropic radiation. The
dependence changes with the grain shape to a detectable level and thus it will
provide a new tool to investigate the shape of dust grains. This paper presents
examples of numerical calculations of the effects and demonstrates the
importance of anisotropic radiation field on the polarized thermal emission.Comment: 13pages, 7figure
A Mid-Infrared Galaxy Atlas (MIGA)
A mid-infrared atlas of part of the Galactic plane () has been constructed using HIRES processed infrared
data to provide a mid-infrared data set for the Canadian Galactic Plane Survey
(CGPS). The addition of this data set to the CGPS will enable the study of the
emission from the smallest components of interstellar dust at an angular
resolution comparable to that of the radio, millimetre, and far-infrared data
in the CGPS. The Mid-Infrared Galaxy Atlas (MIGA) is a mid-infrared (12 m
and 25 m) counterpart to the far-infrared IRAS Galaxy Atlas (IGA), and
consists of resolution enhanced ( resolution) HIRES images along
with ancillary maps. This paper describes the processing and characteristics of
the atlas, the cross-beam simulation technique used to obtain high-resolution
ratio maps, and future plans to extend both the IGA and MIGA.Comment: 38 pages (including 15 tables), 13 figures (8 dithered GIF and 5
EPS). Submitted to Astrophysical Journal Supplement Series. A preprint with
higher resolution figures is available at
http://www.cita.utoronto.ca/~kerton/publications.htm
AKARI Detections of Hot Dust in Luminous Infrared Galaxies
We present a new sample of active galactic nuclei (AGNs) identified using the
catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an
advantage in detecting AGNs that are obscured at optical wavelengths due to
extinction. We first selected AKARI 9micron excess sources with
F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky
Survey. We then obtained follow-up near-infrared spectroscopy with the
AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained
optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m
telescope at Lick Observatory. On the basis of on these observations, we
detected hot dust with a characteristic temperature of ~500K in two luminous
infrared galaxies. The hot dust is suspected to be associated with AGNs that
exhibit their nonstellar activity not in the optical, but in the near- and
mid-infrared bands, i.e., they harbor buried AGNs. The host galaxy stellar
masses of 4-6 x 10^9 M_sun are small compared with the hosts in
optically-selected AGN populations. These objects were missed by previous
surveys, demonstrating the power of the AKARI MIR All-Sky Survey to widen AGN
searches to include more heavily obscured objects. The existence of multiple
dusty star clusters with massive stars cannot be completely ruled out with our
current data.Comment: 15 pages, 4 figures, to be published in Astronomy & Astrophysic
A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map
Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through
a foreground removal of the zodiacal emission, we serendipitously detected a
bright residual component whose angular size is about 50 x 20 deg. at a
wavelength of 9 micron. Aims. We investigate the origin and the physical
properties of the residual component. Methods. We measured the surface
brightness of the residual component in the AKARI mid-infrared all-sky maps.
Results. The residual component was significantly detected only in 2007
January, even though the same region was observed in 2006 July and 2007 July,
which shows that it is not due to the Galactic emission. We suggest that this
may be a small cloud passing near the Earth. By comparing the observed
intensity ratio of I_9um/I_18um with the expected intensity ratio assuming
thermal equilibrium of dust grains at 1 AU for various dust compositions and
sizes, we find that dust grains in the moving cloud are likely to be much
smaller than typical grains that produce the bulk of the zodiacal light.
Conclusions. Considering the observed date and position, it is likely that it
originates in the solar coronal mass ejection (CME) which took place on 2007
January 25.Comment: 5 pages, 4 figures, accepted by Astronomy and Astrophysic
Resolved 24.5 micron emission from massive young stellar objects
Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&
- …
