1,280 research outputs found
Tight focal spots using azimuthally polarised light from a Fresnel cone
When focusing a light beam at high numerical aperture, the resulting electric
field profile in the focal plane depends on the transverse polarisation
profile, as interference between different parts of the beam needs to be taken
into account. It is well known that radial polarised light produces a
longitudinal polarisation component and can be focused below the conventional
diffraction limit for homogeneously polarised light, and azimuthally polarised
light that carries one unit of angular momentum can achieve even tighter focal
spots. This is of interest for example for enhancing resolution in scanning
microscopy. There are numerous ways to generate such polarisation structures,
however, setups can be expensive and usually rely on birefringent components,
hence prohibiting broadband operation. We have recently demonstrated a passive,
low-cost technique using a simple glass cone (Fresnel cone) to generate beams
with structured polarisation. We show here that the polarisation structure
generated by Fresnel cones focuses better than radial polarised light at all
numerical apertures. Furthermore, we investigate in detail the application of
polarised light structures for two-photon microscopy. Specifically we
demonstrate a method that allows us to generate the desired polarisation
structure at the back aperture of the microscope by pre-compensating any
detrimental phase shifts using a combination of waveplates
Comparison of beam generation techniques using a phase only spatial light modulator
Whether in art or for QR codes, images have proven to be
both powerful and efficient carriers of information. Spatial light modulators
allow an unprecedented level of control over the generation of optical fields
by using digital holograms. There is no unique way of obtaining a desired
light pattern however, leaving many competing methods for hologram
generation. In this paper, we test six hologram generation techniques
in the creation of a variety of modes as well as a photographic image:
rating the methods according to obtained mode quality and power. All
techniques compensate for a non-uniform mode profile of the input laser
and incorporate amplitude scaling. We find that all methods perform well
and stress the importance of appropriate spatial filtering. We expect these
results to be of interest to those working in the contexts of microscopy,
optical trapping or quantum image creation
Comparison of beam generation techniques using a phase only spatial light modulator
Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation
Evaluating the use of Apo-neocarzinostatin as a cell penetrating protein.
Protein-ligand complex neocarzinostatin (NCS) is a small, thermostable protein-ligand complex that is able to deliver its ligand cargo into live mammalian cells where it induces DNA damage. Apo-NCS is able to functionally display complementarity determining regions loops, and has been hypothesised to act as a cell-penetrating protein, which would make it an ideal scaffold for cell targeting, and subsequent intracellular delivery of small-molecule drugs. In order to evaluate apo-NCS as a cell penetrating protein, we have evaluated the efficiency of its internalisation into live HeLa cells using matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry and fluorescence microscopy. Following incubation of cells with apo-NCS, we observed no evidence of internalisation
First measurement and shell model interpretation of the g factor of the 21+ state in self-conjugate radioactive 44Ti
AbstractThe g factor of the 21+ state in radioactive 44Ti has been measured for the first time with the technique of α transfer to 40Ca beams in inverse kinematics in combination with transient magnetic fields, yielding the value, g(21+)=+0.52(15). In addition, the lifetimes of the 21+, τ=3.97(28) ps, and the 41+ states, τ=0.65(6) ps, were redetermined with higher precision using the Doppler shift attenuation method. The deduced B(E2)'s and the g factor were well explained by a full fp shell model calculation using the FPD6 effective NN interaction. The g factor can also be accounted for by a simple rotational model (g=Z/A). However, if one also considers the B(E2)'s and the E(41+)/E(21+) ratios, then an imperfect vibrator picture gives better agreement with the data
Cavity-enhanced frequency up-conversion in rubidium vapour
We report the first use of a ring cavity to both enhance the output power and dramatically narrow the linewidth (<1MHz) of blue light generated by four wave mixing in a rubidium vapour cell. We find that the high output power available in our cavity-free system leads to power broadening of the generated blue light linewidth. Our ring cavity removes this limitation, allowing high output power and narrow linewidth to be achieved concurrently. As the cavity blue light is widely tunable over the 85Rb 5S1/2F=3 → 6P3/2 transition, this narrow linewidth light would be suitable for second-stage laser cooling, which could be valuable for efficient 85Rb BEC production
Methanol and excited OH masers towards W51: I - Main and South
MERLIN phase-referenced polarimetric observations towards the W51 complex
were carried out in March 2006 in the Class II methanol maser transition at
6.668 GHz and three of the four excited OH maser hyperfine transitions at 6
GHz. Methanol maser emission is found towards both W51 Main and South. We did
not detect any emission in the excited OH maser lines at 6.030 and 6.049 GHz
down to a 3 sigma limit of ~20 mJy per beam. Excited OH maser emission at 6.035
GHz is only found towards W51 Main. This emission is highly circularly
polarised (typically 45% and up to 87%). Seven Zeeman pairs were identified in
this transition, one of which contains detectable linear polarisation. The
magnetic field strength derived from these Zeeman pairs ranges from +1.6 to
+6.8 mG, consistent with the previously published magnetic field strengths
inferred from the OH ground-state lines. The bulk of the methanol maser
emission is associated with W51 Main, sampling a total area of ~3"x2.2" (i.e.,
~16200x11900 AU), while only two maser components, separated by ~2.5", are
found in the W51 South region. The astrometric distributions of both 6.668-GHz
methanol and 6.035-GHz excited-OH maser emission in the W51 Main/South region
are presented here. The methanol masers in W51 Main show a clear coherent
velocity and spatial structure with the bulk of the maser components
distributed into 2 regions showing a similar conical opening angle with of a
central velocity of ~+55.5 km/s and an expansion velocity of =<5 km/s. The mass
contained in this structure is estimated to be at least 22 solar masses. The
location of maser emission in the two afore-mentioned lines is compared with
that of previously published OH ground-state emission. Association with the
UCHII regions in the W51 Main/South complex and relationship of the masers to
infall or outflow in the region are discussed.Comment: 19 pages, 16 figures and 4 tables, accepted for publication in MNRA
HI Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation
We present the results of a comparative study of HI narrow self-absorption
(HINSA), OH, 13CO, and C18O in five dark clouds. The HINSA follows the
distribution of the emission of the carbon monoxide isotopologues, and has a
characteristic size close to that of 13CO. This confirms that the HINSA is
produced by cold HI which is well mixed with molecular gas in well-shielded
regions. The ratio of the atomic hydrogen density to total proton density for
these sources is 5 to 27 x 10^{-4}. Using cloud temperatures and the density of
HI, we set an upper limit to the cosmic ray ionization rate of 10^{-16} s^{-1}.
Comparison of observed and modeled fractional HI abundances indicates ages for
these clouds to be 10^{6.5} to 10^{7} yr. The low values of the HI density we
have determined make it certain that the time scale for evolution from an
atomic to an almost entirely molecular phase, must be a minimum of several
million years. This clearly sets a lower limit to the overall time scale for
star formation and the lifetime of molecular clouds
Risk factors and milk yield losses associated with lameness in Holstein-Friesian dairy cattle
- …
