85 research outputs found

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Maximum-likelihood parameter estimation of bilinear systems

    No full text
    This paper addresses the problem of estimating the parameters in a multivariable bilinear model on the basis of observed input-output data. The main contribution is to develop, analyze, and empirically study new techniques for computing a maximum-likelihood based solution. In particular, the emphasis here is on developing practical methods that are illustrated to be numerically reliable, robust to choice of initialization point, and numerically efficient in terms of how computation and memory requirements scale relative to problem size. This results in new methods that can be reliably deployed on systems of nontrivial state, input and output dimension. Underlying these developments is a new approach (in this context) of employing the expectation-maximization method as a means for robust and gradient free computation of the maximum-likelihood solution

    Maximum-likelihood parameter estimation of bilinear systems

    No full text

    Convergence of Markov-Chain Monte-Carlo Approaches to Multiuser and MIMO Detection

    No full text
    corecore