123 research outputs found

    Considering the User in the Wireless World

    Get PDF
    The near future promises significant advances in communication capabilities, but one of the keys to success is the capability understanding of the people with regards to its value and usage. In considering the role of the user in the wireless world of the future, the Human Perspective Working Group (WG1) of the Wireless World Research Forum has gathered input and developed positions in four important areas: methods, processes, and best practices for user-centered research and design; reference frameworks for modeling user needs within the context of wireless systems; user scenario creation and analysis; and user interaction technologies. This article provides an overview of WG1's work in these areas that are critical to ensuring that the future wireless world meets and exceeds the expectations of people in the coming decades

    Concurrent Acquisition of a Single Nucleotide Polymorphism in Diverse Influenza H5N1 Clade 2.2 Sub-clades

    Get PDF
    Highly pathogenic Influenza A H5N1 was first identified in Guangdong Province in 1996, followed by human cases in Hong Kong in 1997 1,2. The number of confirmed human cases now exceeds 300 and the associated Case Fatality Rate exceeds 60% 3. The genetic diversity of the serotype continues to increase. Four distinct clades or sub-clades have been linked to human cases 4-7. The gradual genetic changes identified in the sub-clades have been attributed to copy errors by viral encoded polymerases that lack an editing function, thereby resulting in antigenic drift 8. We report here the concurrent acquisition of the same polymorphism by multiple, genetically distinct, clade 2.2 sub-clades in Egypt, Russia, Kuwait, and Ghana. These changes are not easily explained by the current theory of “random mutation” through copy error, and are more easily explained by recombination with a common source. The recombination role is further supported by the high fidelity replication in swine influenza 9 and aggregation of single nucleotide polymorphisms in H5N1 clade 2.2 hemagglutinin 10

    Where am I Now: Symbols Used in Manggarai Funeral Rite, Indonesia

    Full text link
    Received 4 March 2023. Accepted 30 May 2023. Published online 3 July 2023.A symbol has a specific meaning and represents the user’s conception, way of thinking, and interpretation. This study aimed to analyze the symbolic interactions of the Manggarai ethnic funeral rite. Data were collected through observation, interviews, and documents. The results of the analysis showed that the symbols are employed as a spiritual and social tool to aid understanding of the outside world as well as to describe and learn the transcendent secret world, such as the “truth of being”. Therefore, the symbols used reflect the interpersonal relations with others, ancestors, and God, called socio-theological relations, and profound philosophy of existence, as they are extremely vulnerable and totally reliant on their predecessors and God

    Concurrent Acquisition of a Single Nucleotide Polymorphism in Diverse Influenza H5N1 Clade 2.2 Sub-clades

    Get PDF
    Highly pathogenic Influenza A H5N1 was first identified in Guangdong Province in 1996, followed by human cases in Hong Kong in 1997. The number of confirmed human cases now exceeds 300, and the associated Case Fatality Rate exceeds 60%. The genetic diversity of the serotype continues to increase. Four distinct clades or sub-clades have been linked to human cases. The gradual genetic changes identified in the sub-clades have been attributed to copy errors by viral encoded polymerases that lack an editing function, thereby resulting in antigenic drift. We report here the concurrent acquisition of the same polymorphism by multiple, genetically distinct, clade 2.2 sub-clades in Egypt, Russia, and Ghana. These changes are not easily explained by the current theory of “random mutation” through copy error, and are more easily explained by recombination with a common source. This conclusion is supported by additional polymorphisms shared by clade 2.2 isolates in Egypt and Germany

    Aggregation of Single Nucleotide Polymorphisms in a Human H5N1 Clade 2.2 Hemagglutinin

    Get PDF
    The evolution of H5N1 has attracted significant interest 1-4 due to linkages with avian 5,6 and human infections 7,8. The basic tenets of influenza genetics 9 attribute genetic drift to replication errors caused by a polymerase complex that lacks a proof reading function. However, recent analysis 10 of swine influenza genes identifies regions copied with absolute fidelity for more than 25 years. In addition, polymorphism tracing of clade 2.2 H5N1 single nucleotide polymorphisms identify concurrent acquisition 11 of the same polymorphism onto multiple genetic backgrounds in widely dispersed geographical locations. Here we show the aggregation of regional clade 2.2 polymorphisms from Germany, Egypt, and sub-Sahara Africa onto a human Nigerian H5N1 hemagglutinin (HA), implicating recombination in the dispersal and aggregation of single nucleotide polymorphisms from closely related genomes

    Aggregation of Single Nucleotide Polymorphisms in a Human H5N1 Clade 2.2 Hemagglutinin

    Get PDF
    The rapid evolution of the H5N1 serotype of avian influenza has been explained by a mechanism involving the selection of single nucleotide polymorphisms generated by copy errors. The recent emergence of H5N1 Clade 2.2 in fifty countries, offered a unique opportunity to view the acquisition of new polymorphism in these evolving genomes. We analyzed the H5N1 hemagglutinin gene from a fatal human case from Nigeria in 2007. The newly emerged polymorphisms were present in diverse H5N1 isolates from the previous year. The aggregation of these polymorphisms from clade 2.2 sub-clades was not supported by recent random mutations, and was most easily explained by recombination between closely related sequences

    Impact of Immunization Technology and Assay Application on Antibody Performance – A Systematic Comparative Evaluation

    Get PDF
    Antibodies are quintessential affinity reagents for the investigation and determination of a protein's expression patterns, localization, quantitation, modifications, purification, and functional understanding. Antibodies are typically used in techniques such as Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assays (ELISA), among others. The methods employed to generate antibodies can have a profound impact on their success in any of these applications. We raised antibodies against 10 serum proteins using 3 immunization methods: peptide antigens (3 per protein), DNA prime/protein fragment-boost (“DNA immunization”; 3 per protein), and full length protein. Antibodies thus generated were systematically evaluated using several different assay technologies (ELISA, IHC, and Western blot). Antibodies raised against peptides worked predominantly in applications where the target protein was denatured (57% success in Western blot, 66% success in immunohistochemistry), although 37% of the antibodies thus generated did not work in any of these applications. In contrast, antibodies produced by DNA immunization performed well against both denatured and native targets with a high level of success: 93% success in Western blots, 100% success in immunohistochemistry, and 79% success in ELISA. Importantly, success in one assay method was not predictive of success in another. Immunization with full length protein consistently yielded the best results; however, this method is not typically available for new targets, due to the difficulty of generating full length protein. We conclude that DNA immunization strategies which are not encumbered by the limitations of efficacy (peptides) or requirements for full length proteins can be quite successful, particularly when multiple constructs for each protein are used
    corecore