4,889 research outputs found
A survey of announcement effects on foreign exchange returns
Researchers have long studied the reaction of foreign exchange returns to macroeconomic announcements in order to infer changes in policy reaction functions and foreign exchange microstructure, including the speed of market reaction to news and how order flow helps impound public and private information into prices. These studies have often been disconnected, however; and this article critically reviews and evaluates the literature on announcement effects on foreign exchange returns.Foreign exchange
Mesoscopic dynamical differences from quantum state preparation in a Bose-Hubbard trimer
Conventional wisdom is that quantum effects will tend to disappear as the
number of quanta in a system increases, and the evolution of a system will
become closer to that described by mean field classical equations. In this
letter we combine newly developed experimental techniques to propose and
analyse an experiment using a Bose-Hubbard trimer where the opposite is the
case. We find that differences in the preparation of a centrally evacuated
trimer can lead to readily observable differences in the subsequent dynamics
which increase with system size. Importantly, these differences can be detected
by the simple measurements of atomic number.Comment: 5 pages, 4 figures, theor
Reducing numerical diffusion for incompressible flow calculations
A number of approaches for improving the accuracy of incompressible, steady-state flow calculations are examined. Two improved differencing schemes, Quadratic Upstream Interpolation for Convective Kinematics (QUICK) and Skew-Upwind Differencing (SUD), are applied to the convective terms in the Navier-Stokes equations and compared with results obtained using hybrid differencing. In a number of test calculations, it is illustrated that no single scheme exhibits superior performance for all flow situations. However, both SUD and QUICK are shown to be generally more accurate than hybrid differencing
Persistent current formation in a high-temperature Bose-Einstein condensate: an experimental test for c-field theory
Experimental stirring of a toroidally trapped Bose-Einstein condensate at
high temperature generates a disordered array of quantum vortices that decays
via thermal dissipation to form a macroscopic persistent current [T. W. Neely
em et al. arXiv:1204.1102 (2012)]. We perform 3D numerical simulations of the
experimental sequence within the Stochastic Projected Gross-Pitaevskii equation
using ab initio determined reservoir parameters. We find that both damping and
noise are essential for describing the dynamics of the high-temperature Bose
field. The theory gives a quantitative account of the formation of a persistent
current, with no fitted parameters.Comment: v2: 7 pages, 3 figures, new experimental data and numerical
simulation
A tutorial task and tertiary courseware model for collaborative learning communities
RAED provides a computerised infrastructure to support the development and administration of Vicarious Learning in collaborative learning communities spread across multiple universities and workplaces. The system is based on the OASIS middleware for Role-based Access Control. This paper describes the origins of the model and the approach to implementation and outlines some of its benefits to collaborative teachers and learners
PATENTS, R&D AND LAG EFFECTS: EVIDENCE FROM FLEXIBLE METHODS FOR COUNT PANEL DATA ON MANUFACTURING FIRMS
Hausman, Hall and Griliches (1984) and Hall, Griliches and Hausman (1986) investigated whether there was a lag in the patent-R&D relationship for the U.S. manufacturing sector using 1970¿s data. They found that there was little evidence of anything but contemporaneous movement of patents and R&D. We reexamine this important issue employing new longitudinal patent data at the firm level for the U.S. manufacturing sector from 1982 to 1992. To address unique features of the data, we estimate various distributed lag and dynamic multiplicative panel count data models. The paper also develops a new class of count panel data models based on series expansion of the distribution of individual effects. The empirical analyses show that, although results are somewhat sensitive to different estimation methods, the contemporaneous relationship between patenting and R&D expenditures continues to be rather strong, accounting for over 60% of the total R&D elasticity. Regarding the lag structure of the patents-R&D relationship, we do find a significant lag in all empirical specifications. Moreover, the estimated lag effects are higher than have previously been found, suggesting that the contribution of R&D history to current patenting has increased from the 1970¿s to the 1980¿s.Innovative activity, Patents and R&D, Individual effects, count panel data methods.
Quantitative acoustic models for superfluid circuits
We experimentally realize a highly tunable superfluid oscillator circuit in a
quantum gas of ultracold atoms and develop and verify a simple lumped-element
description of this circuit. At low oscillator currents, we demonstrate that
the circuit is accurately described as a Helmholtz resonator, a fundamental
element of acoustic circuits. At larger currents, the breakdown of the
Helmholtz regime is heralded by a turbulent shedding of vortices and density
waves. Although a simple phase-slip model offers qualitative insights into the
circuit's resistive behavior, our results indicate deviations from the
phase-slip model. A full understanding of the dissipation in superfluid
circuits will thus require the development of empirical models of the turbulent
dynamics in this system, as have been developed for classical acoustic systems.Comment: 12 pages, 9 figure
Observation of vortex dipoles in an oblate Bose-Einstein condensate
We report experimental observations and numerical simulations of the
formation, dynamics, and lifetimes of single and multiply charged quantized
vortex dipoles in highly oblate dilute-gas Bose-Einstein condensates (BECs). We
nucleate pairs of vortices of opposite charge (vortex dipoles) by forcing
superfluid flow around a repulsive gaussian obstacle within the BEC. By
controlling the flow velocity we determine the critical velocity for the
nucleation of a single vortex dipole, with excellent agreement between
experimental and numerical results. We present measurements of vortex dipole
dynamics, finding that the vortex cores of opposite charge can exist for many
seconds and that annihilation is inhibited in our highly oblate trap geometry.
For sufficiently rapid flow velocities we find that clusters of like-charge
vortices aggregate into long-lived dipolar flow structures.Comment: 4 pages, 4 figures, 1 EPAPS fil
Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates
We study conditions under which vortices in a highly oblate harmonically
trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a
blue-detuned Gaussian laser beam, with particular emphasis on the potentially
destabilizing effects of laser beam positioning within the BEC. Our approach
involves theoretical and numerical exploration of dynamically and energetically
stable pinning of vortices with winding number up to , in correspondence
with experimental observations. Stable pinning is quantified theoretically via
Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct
numerical simulations for a range of conditions similar to those of
experimental observations. The theoretical and numerical results indicate that
the pinned winding number, or equivalently the winding number of the superfluid
current about the laser beam, decays as a laser beam of fixed intensity moves
away from the BEC center. Our theoretical analysis helps explain previous
experimental observations, and helps define limits of stable vortex pinning for
future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure
The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model
Recent research has demonstrated that the concentrations of anthropogenic halocarbons have decreased in response to the worldwide phaseout of ozone depleting substances. Yet in 2015 the Antarctic ozone hole reached a historical record daily average size in October. Model simulations with specified dynamics and temperatures based on a reanalysis suggested that the record size was likely due to the eruption of Calbuco but did not allow for fully coupled dynamical or thermal feedbacks. We present simulations of the impact of the 2015 Calbuco eruption on the stratosphere using the Whole Atmosphere Community Climate Model with interactive dynamics and temperatures. Comparisons of the interactive and specified dynamics simulations indicate that chemical ozone depletion due to volcanic aerosols played a key role in establishing the record-sized ozone hole of October 2015. The analysis of an ensemble of interactive simulations with and without volcanic aerosols suggests that the forced response to the eruption of Calbuco was an increase in the size of the ozone hole by 4.5 × 10⁶ km²
- …
