142,087 research outputs found
Spin-Spin Interactions in Gauge Theory of Gravity, Violation of Weak Equivalence Principle and New Classical Test of General Relativity
For a long time, it is generally believed that spin-spin interactions can
only exist in a theory where Lorentz symmetry is gauged, and a theory with
spin-spin interactions is not perturbatively renormalizable. But this is not
true. By studying the motion of a spinning particle in gravitational field, it
is found that there exist spin-spin interactions in gauge theory of gravity.
Its mechanism is that a spinning particle will generate gravitomagnetic field
in space-time, and this gravitomagnetic field will interact with the spin of
another particle, which will cause spin-spin interactions. So, spin-spin
interactions are transmitted by gravitational field. The form of spin-spin
interactions in post Newtonian approximations is deduced. This result can also
be deduced from the Papapetrou equation. This kind of interactions will not
affect the renormalizability of the theory. The spin-spin interactions will
violate the weak equivalence principle, and the violation effects are
detectable. An experiment is proposed to detect the effects of the violation of
the weak equivalence principle.Comment: 17 pages, no figur
Recommended from our members
Fighting coal — Effectiveness of coal-replacement programs for residential heating in China: Empirical findings from a household survey
Household fuel substitution has been a crucial step for controlling air pollution in China, but the performance evaluation of household fuel substitution policies is overlooked. This study capitalized on the opportunity to use data collected during the household coal-replacement program in North China to evaluate the effect of a mandatory policy on fuel substitution at the micro-level. The results indicate that there is a significant effect of the coal-replacement program on fuel substitution, as we expected. The coal-to-electricity policy is effective in achieving the goal of a clean winter but not a warm winter due to the decline of delivered energy, while the high-quality coal replacement policy results in better performance in delivered energy but no improvement in indoor air quality. It is recommended to prioritize supporting measures on both the supply and demand sides before implementation, along with undertaking differential measures during the implementation phase to better address energy inequality
Phenomenology from a U(1) gauged hidden sector
We consider the phenomenological consequences of a hidden Higgs sector
extending the Standard Model (SM), in which the matter content are uncharged
under the SM gauge groups. We consider a simple case where the hidden sector is
gauged under a U(1) with one Higgs singlet. The only couplings between SM and
the hidden sector are through mixings between the neutral gauge bosons of the
two respective sectors, and between the Higgs bosons. We find signals testable
at the LHC that can reveal the existence and shed light on the nature of such a
hidden sector.Comment: 5 pages, 2 figures. Talk given at the Lake Louise Winter Institute
2007, Feb. 19-24, Alberta, Canad
Testing Realistic Quark Mass Matrices in the Custodial Randall-Sundrum Model with Flavor Changing Top Decays
We study quark mass matrices in the Randall-Sundrum (RS) model with bulk
symmetry . The Yukawa couplings are
assumed to be within an order of magnitude of each other, and perturbative. We
find that quark mass matrices of the symmetrical form proposed by Koide
\textit{et. al.} [Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi and T.
Fukuyama, Phys. Rev. D {\bf 66}, 093006 (2002)] can be accommodated in the RS
framework with the assumption of hierarchyless Yukawa couplings, but not the
hermitian Fritzsch-type mass matrices. General asymmetrical mass matrices are
also found which fit well simultaneously with the quark masses and the
Cabibbo-Kobayashi-Maskawa matrix. Both left-handed (LH) and right-handed (RH)
quark rotation matrices are obtained that allow analysis of flavour changing
decay of both LH and RH top quarks. At a warped down scale of 1.65 TeV, the
total branching ratio of t \ra Z + jets can be as high as for symmetrical mass matrices and for
asymmetrical ones. This level of signal is within reach of the LHC.Comment: 30 pages, 6 figures. Reference added, typos corrected, discussions in
Sec. IV B expanded. Version conforms to the published versio
A Very Narrow Shadow Extra Z-boson at Colliders
We consider the phenomenological consequences of a hidden Higgs sector
extending the Standard Model (SM), in which the ``shadow Higgs'' are uncharged
under the SM gauge groups. We consider a simple U(1) model with one Higgs
singlet. One mechanism which sheds light on the shadow sector is the mixing
between the neutral gauge boson of the SM and the additional U(1) gauge group.
The mixing happens through the usual mass-mixing and also kinetic-mixing, and
is the only way the ``shadow '' couples to the SM. We study in detail
modifications to the electroweak precision tests (EWPTs) that the presence of
such a shadow sector would bring, which in turn provide constraints on the
kinetic-mixing parameter, , left free in our model. The shadow
production rate at the LHC and ILC depends on . We find that
observable event rate at both facilities is possible for a reasonable range of
allowed by EWPTs.Comment: 10 pages, 7 figures. Note and refs. adde
OM Theory and V-duality
We show that the (M5, M2, M2, MW) bound state solution of eleven
dimensional supergravity recently constructed in hep-th/0009147 is related to
the (M5, M2) bound state one by a finite Lorentz boost along a M5-brane
direction perpendicular to the M2-brane. Given the (M5, M2) bound state as a
defining system for OM theory and the above relation between this system and
the (M5, M2, M2', MW) bound state, we test the recently proposed V-duality
conjecture in OM theory. Insisting to have a decoupled OM theory, we find that
the allowed Lorentz boost has to be infinitesimally small, therefore resulting
in a family of OM theories related by Galilean boosts. We argue that such
related OM theories are equivalent to each other. In other words, V-duality
holds for OM theory as well. Upon compactification on either an electric or a
`magnetic' circle (plus T-dualities as well), the V-duality for OM theory gives
the known one for either noncommutative open string theories or noncommutative
Yang-Mills theories. This further implies that V-duality holds in general for
the little m-theory without gravity.Comment: 17 pages, typos corrected and references adde
- …