68 research outputs found

    Structures of new acidic O-specific polysaccharides of the bacterium Proteus mirabilis serogroups O26 and O30

    Get PDF
    AbstractThe polysaccharide chains of the lipopolysaccharides of the Proteus mirabilis serogroups O26 and O30 were studied using sugar and methylation analysis and 1H and 13C NMR spectroscopy, including two-dimensional correlation spectroscopy and rotating-frame NOE spectroscopy. The polysaccharides were found to be acidic due to the presence of d-galacturonic acid and its amide with l-lysine in serogroup O26 or d-glucuronic acid in serogroup O30, and the structures of their tetrasaccharide repeating units were established. The O26-specific polysaccharide is structurally and serologically related to the O-specific polysaccharide of P. mirabilis O28, which includes amides of d-GalA with l-lysine and l-serine [Radziejewska-Lebrecht, J. et al. (1995) Eur. J. Biochem. 230, 705–712]

    A novel plasmid-encoded serotype conversion mechanism through addition of phosphoethanolamine to the O-antigen of Shigella flexneri

    Get PDF
    Abstract Shigella flexneri is the major pathogen causing bacillary dysentery in developing countries. S. flexneri is divided into at least 16 serotypes based on the combination of antigenic determinants present in the O-antigen. All the serotypes (except for serotype 6) share a basic O-unit containing one N-acetyl-D-glucosamine and three L-rhamnose residues, whereas differences between the serotypes are conferred by phage-encoded glucosylation and/or O-acetylation. Serotype Xv is a newly emerged and the most prevalent serotype in China, which can agglutinate with both MASF IV-1 and 7,8 monoclonal antibodies. The factor responsible for the presence of MASF IV-1 (E1037) epitope has not yet been identified. In this study, we analyzed the LPS structure of serotype Xv strains and found that the MASF IV-1 positive phenotype depends on an Oantigen modification with a phosphoethanolamine (PEtN) group attached at position 3 of one of the rhamnose residues. A plasmid carried gene, lpt-O (LPS phosphoethanolamine transferase for O-antigen), mediates the addition of PEtN for serotype Xv and other MASF IV-1 positive strains. These findings reveal a novel serotype conversion mechanism in S. flexneri and show the necessity of further extension of the serotype classification scheme recognizing the MASF IV-1 positive strains as distinctive subtypes

    Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus

    Get PDF
    © 2014 Elsevier Ltd. All rights reserved. Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of A. baumannii strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established: →4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→3)-α-D-FucpNAc-(1→ where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6-dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol-water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that A. baumannii 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established

    Targeting of Formyl Peptide Receptor 2 for in vivo imaging of acute vascular inflammation

    Get PDF
    © The author(s). Inflammatory conditions are associated with a variety of diseases and can significantly contribute to their pathophysiology. Neutrophils are recognised as key players in driving vascular inflammation and promoting inflammation resolution. As a result, neutrophils, and specifically their surface formyl peptide receptors (FPRs), are attractive targets for non-invasive visualization of inflammatory disease states and studying mechanistic details of the process. Methods: A small-molecule Formyl Peptide Receptor 2 (FPR2/ALX)-targeted compound was combined with two rhodamine-derived fluorescent tags to form firstly, a targeted probe (Rho-pip-C1) and secondly a targeted, pH-responsive probe (Rho-NH-C1) for in vivo applications. We tested internalization, toxicity and functional interactions with neutrophils in vitro for both compounds, as well as the fluorescence switching response of Rho-NH-C1 to neutrophil activation. Finally, in vivo imaging (fluorescent intravital microscopy [IVM]) and therapeutic efficacy studies were performed in an inflammatory mouse model. Results: In vitro studies showed that the compounds bound to human neutrophils via FPR2/ALX without causing internalisation at relevant concentrations. Additionally, the compounds did not cause toxicity or affect neutrophil functional responses (e.g. chemotaxis or transmigration). In vivo studies using IVM showed Rho-pip-C1 bound to activated neutrophils in a model of vascular inflammation. The pH-sensitive (“switchable”) version termed Rho-NH-C1 validated these findings, showing fluorescent activity only in inflammatory conditions. Conclusions: These results indicate a viable design of fluorescent probes that have the ability to detect inflammatory events by targeting activated neutrophils.British Pharmacological Society; Wilkinson Trust; EPSRC; German Research Foundation

    The o-specific polysaccharide chain of campylobacter fetus serotype a lipopolysaccharide is a partially o-acetylated 1,3-linked alpha-d-mannan

    No full text
    A polysaccharide fraction liberated from Campylobacter fetus subsp. fetus serotype A lipopolysaccharide by mild acid hydrolysis followed by gel-permeation chromatography contained a partially O-acetylated D-mannan chain, as an O-specific polysaccharide, with a core oligosaccharide attached. The structure of the polysaccharide was studied by O-deacetylation, methylation, and H-1- and C-13-NMR spectroscopy, including computer-assisted analysis of the C-13-NMR spectrum. A structure of -->3)-alpha-D-Manp2Ac-(1--> was established as the structure of the O-specific polysaccharide, the degree of O-acetylation of the mannose residues at position 2 being estimated as 80-90%. As judged by the ratio of mannose to core constituents, the D-mannan chain consists on average of 10-12 monosaccharide units

    The o-specific polysaccharide chain of campylobacter fetus serotype b lipopolysaccharide is a d-rhamnan terminated with 3-o -methyl-d-rhamnose (d-acofriose)

    No full text
    An O-specific polysaccharide was liberated from Campylobacter fetus subsp. fetus serotype B lipopolysaccharide by mild acid hydrolysis followed by gel chromatography. This polysaccharide was found to contain D-rhamnose and 3-O-methyl-D-rhamnose (D-Rha3Me, D-acofriose) in a ratio of approximately 24:1, as well as lipopolysaccharide core constituents. The structure of the polysaccharide was studied by H-1-NMR and C-13-NMR spectroscopy, which included two-dimensional COSY, rotating-frame NOE spectroscopy (ROESY), and computer-assisted analysis of the C-13-NMR spectrum. Methylation analysis using [H-2(3)]methyl iodide and Smith degradation followed by GLC/MS of the derived acetylated oligosaccharide-alditols was used to determine the location of D-acofriose. The O-specific polysaccharide is linear, consists on average of 12 disaccharide repeating units, and is terminated by a residue of D-acofriose. The following structure of the D-rhamnan chain was established: [GRAPHICS] and fumarate as oxidant. Steady-state kinetics for the oxidase and the fumarate reductase activity of L-aspartate oxidase were obtained using either fumarate or oxygen as electron acceptor and L-aspartate as electron donor. Finally, succinate was identified as the product of the L-aspartate:fumarate oxidoreductase activity using radiolabeled fumarate under anaerobic conditions. The results suggest that fumarate can be a valuable alternative to oxygen as a substrate for L-aspartate oxidase

    Effects of lipopolysaccharides biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface

    No full text
    The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of inframe nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS
    • …
    corecore