921 research outputs found

    Discourse and identity in a corpus of lesbian erotica

    Get PDF
    This article uses corpus linguistic methodologies to explore representations of lesbian desires and identities in a corpus of lesbian erotica from the 1980s and 1990s. We provide a critical examination of the ways in which “lesbian gender,” power, and desire are represented, (re-)produced, and enacted, often in ways that challenge hegemonic discourses of gender and sexuality. By examining word frequencies and collocations, we critically analyze some of the themes, processes, and patterns of representation in the texts. Although rooted in linguistics, we hope this article provides an accessible, interdisciplinary, and timely contribution toward developing understandings of discursive practices surrounding gender and sexuality

    Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements

    Full text link
    Quantized spin excitations in a single ferromagnetic microstrip have been measured using the microwave photovoltage technique. Several kinds of spin wave modes due to different contributions of the dipole-dipole and the exchange interactions are observed. Among them are a series of distinct dipole-exchange spin wave modes, which allow us to determine precisely the subtle spin boundary condition. A comprehensive picture for quantized spin excitations in a ferromagnet with finite size is thereby established. The dispersions of the quantized spin wave modes have two different branches separated by the saturation magnetization.Comment: 4 pages, 3 figure

    Magnetization Reversal in Elongated Fe Nanoparticles

    Get PDF
    Magnetization reversal of individual, isolated high-aspect-ratio Fe nanoparticles with diameters comparable to the magnetic exchange length is studied by high-sensitivity submicron Hall magnetometry. For a Fe nanoparticle with diameter of 5 nm, the magnetization reversal is found to be an incoherent process with localized nucleation assisted by thermal activation, even though the particle has a single-domain static state. For a larger elongated Fe nanoparticle with a diameter greater than 10 nm, the inhomogeneous magnetic structure of the particle plays important role in the reversal process.Comment: 6 pages, 6 figures, to appear in Phys. Rev. B (2005

    Field- and pressure-induced phases in Sr4_{4}Ru3_{3}O10_{10}: A spectroscopic investigation

    Full text link
    We have investigated the magnetic-field- and pressure-induced structural and magnetic phases of the triple-layer ruthenate - Sr4_{4}Ru3_{3}O10_{10}. Magnetic-field-induced changes in the phonon spectra reveal dramatic spin-reorientation transitions and strong magneto-elastic coupling in this material. Additionally, pressure-dependent Raman measurements at different temperatures reveal an anomalous negative Gruneisen-parameter associated with the B1g_{1g} mode (\sim 380 cm1^{-1}) at low temperatures (T << 75K), which can be explained consistently with the field dependent Raman data.Comment: 5 pages, 4 figures final version published in PRL 96, 067004 (2006

    Four-terminal resistance of an interacting quantum wire with weakly invasive contacts

    Full text link
    We analyze the behavior of the four-terminal resistance, relative to the two-terminal resistance of an interacting quantum wire with an impurity, taking into account the invasiveness of the voltage probes. We consider a one-dimensional Luttinger model of spinless fermions for the wire. We treat the coupling to the voltage probes perturbatively, within the framework of non-equilibrium Green function techniques. Our investigation unveils the combined effect of impurities, electron-electron interactions and invasiveness of the probes on the possible occurrence of negative resistance.Comment: 10 pages, 7 figure

    Controlled switching of intrinsic localized modes in a 1-D antiferromagnet

    Full text link
    Nearly steady-state locked intrinsic localized modes (ILMs) in the quasi-1d antiferromagnet (C2H5NH3)2CuCl4 are detected via four-wave mixing emission or the uniform mode absorption. Exploiting the long-time stability of these locked ILMs, repeatable nonlinear switching is observed by varying the sample temperature, and localized modes with various amplitudes are created by modulation of the microwave driver power. This steady-state ILM locking technique could be used to produce energy localization in other atomic lattices.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. v.2 : clarifications of text and figures in response to comment

    Evidence for magnetic clusters in BaCoO3_3

    Full text link
    Magnetic properties of the transition metal oxide BaCoO3_3 are analyzed on the basis of the experimental and theoretical literature available via ab inito calculations. These can be explained by assuming the material to be formed by noninteracting ferromagnetic clusters of about 1.2 nm in diameter separated by about 3 diameters. Above about 50 K, the so-called blocking temperature, superparamagnetic behavior of the magnetic clusters occurs and, above 250 K, paramagnetism sets in.Comment: 4 pages, 1 figur

    First principles study of the multiferroics BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}: Structure, polarization, and magnetic ordering temperature

    Full text link
    We present results of an {\it ab initio} density functional theory study of three bismuth-based multiferroics, BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}. We disuss differences in the crystal and electronic structure of the three systems, and we show that the application of the LDA+UU method is essential to obtain realistic structural parameters for Bi2_{2}FeCrO6_{6}. We calculate the magnetic nearest neighbor coupling constants for all three systems and show how Anderson's theory of superexchange can be applied to explain the signs and relative magnitudes of these coupling constants. From the coupling constants we then obtain a mean-field approximation for the magnetic ordering temperatures. Guided by our comparison of these three systems, we discuss the possibilities for designing a multiferroic material with large magnetization above room temperature.Comment: 8 Pages, 4 Figure

    Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature

    Full text link
    The field-driven reorientation transition of an anisotropic ferromagnetic monolayer is studied within the context of a finite-temperature Green's function theory. The equilibrium state and the field dependence of the magnon energy gap E0E_0 are calculated for static magnetic field HH applied in plane along an easy or a hard axis. In the latter case, the in-plane reorientation of the magnetization is shown to be continuous at T=0, in agreement with free spin wave theory, and discontinuous at finite temperature T>0T>0, in contrast with the prediction of mean field theory. The discontinuity in the orientation angle creates a jump in the magnon energy gap, and it is the reason why, for T>0T>0, the energy does not go to zero at the reorientation field. Above the Curie temperature TCT_C, the magnon energy gap E0(H)E_0(H) vanishes for H=0 both in the easy and in the hard case. As HH is increased, the gap is found to increase almost linearly with HH, but with different slopes depending on the field orientation. In particular, the slope is smaller when HH is along the hard axis. Such a magnetic anisotropy of the spin-wave energies is shown to persist well above TCT_C (T1.2TCT \approx 1.2 T_C).Comment: Final version accepted for publication in Physical Review B (with three figures
    corecore