11,719 research outputs found
A new data reduction scheme to obtain the mode II fracture properties of Pinus Pinaster wood
In this work a numerical study of the End Notched Flexure (ENF) specimen was performed
in order to obtain the mode II critical strain energy released rate (GIIc) of a Pinus pinaster wood in the RL crack propagation system. The analysis included interface finite elements and a progressive damage
model based on indirect use of Fracture Mechanics.
The difficulties in monitoring the crack length during an experimental ENF test and the inconvenience of performing separate tests in order to obtain the elastic properties are well known. To avoid these
problems, a new data reduction scheme based on the equivalent crack concept was proposed and validated. This new data reduction scheme, the Compliance-Based Beam Method (CBBM), does not require crack measurements during ENF tests and additional tests to obtain elastic properties.FCT - POCTI/EME/45573/200
A study of 147 extended haplotypes carryng the C282Y HFE mutation: A novel approach to explain the involvement of the MHC-CLASS I region in the setting of CD8+ T lymphocyte numbers in humans
Topological phases in a two-dimensional lattice: Magnetic field versus spin-orbit coupling
In this work, we explore the rich variety of topological states that arise in
two-dimensional systems, by considering the competing effects of spin-orbit
couplings and a perpendicular magnetic field on a honeycomb lattice. Unlike
earlier approaches, we investigate minimal models in order to clarify the
effects of the intrinsic and Rashba spin-orbit couplings, and also of the
Zeeman splitting, on the quantum Hall states generated by the magnetic field.
In this sense, our work provides an interesting path connecting quantum Hall
and quantum spin Hall physics. First, we consider the properties of each term
individually and we analyze their similarities and differences. Secondly, we
investigate the subtle competitions that arise when these effects are combined.
We finally explore the various possible experimental realizations of our model.Comment: 19 pages, 15 figure
Genesis of the Floquet Hofstadter butterfly
We investigate theoretically the spectrum of a graphene-like sample
(honeycomb lattice) subjected to a perpendicular magnetic field and irradiated
by circularly polarized light. This system is studied using the Floquet
formalism, and the resulting Hofstadter spectrum is analyzed for different
regimes of the driving frequency. For lower frequencies, resonances of various
copies of the spectrum lead to intricate formations of topological gaps. In the
Landau-level regime, new wing-like gaps emerge upon reducing the driving
frequency, thus revealing the possibility of dynamically tuning the formation
of the Hofstadter butterfly. In this regime, an effective model may be
analytically derived, which allows us to retrace the energy levels that exhibit
avoided crossings and ultimately lead to gap structures with a wing-like shape.
At high frequencies, we find that gaps open for various fluxes at , and
upon increasing the amplitude of the driving, gaps also close and reopen at
other energies. The topological invariants of these gaps are calculated and the
resulting spectrum is elucidated. We suggest opportunities for experimental
realization and discuss similarities with Landau-level structures in non-driven
systems.Comment: 8 pages, 4 figure
Tuning edge state localization in graphene nanoribbons by in-plane bending
The electronic properties of graphene are influenced by both geometric
confinement and strain. We study the electronic structure of in-plane bent
graphene nanoribbons, systems where confinement and strain are combined. To
understand its electronic properties, we develop a tight-binding model that has
a small computational cost and is based on exponentially decaying hopping and
overlap parameters. Using this model, we show that the edge states in zigzag
graphene nanoribbons are sensitive to bending and develop an effective
dispersion that can be described by a one-dimensional atomic chain model.
Because the velocity of the electrons at the edge is proportional to the slope
of the dispersion, the edge states become gradually delocalized upon increasing
the strength of bending.Comment: 11 pages, 8 figure
Antioxidant,antimicrobial and toxicological properties of Schinus molle L. essential oils
Ethnopharmacological relevance: Schinus molle L. has been used in folk medicine as antibacterial, antiviral, topical antiseptic, antifungal, antioxidant, anti-inflammatory, anti-tumoural as well as antispasmodic and analgesic; however, there are few studies of pharmacological and toxicological properties of S. molle essential oils.
Aim of the study: The aim of this study was to evaluate the antioxidant and antimicrobial activities of S. molle leaf and fruit essential oils, correlated with their chemical composition and evaluate their acute toxicity.
Materials and methods: The chemical composition of S. molle leaf and fruit essential oils were evaluated by GC-FID and GC-MS. Antioxidant properties were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and β-carotene/linoleic acid methods. Antimicrobial properties were evaluated by the agar disc diffusion method and minimal inhibitory concentration assay. Toxicity in Artemia salina and acute toxicity with behavioural screening in mice were evaluated.
Results: The dominant compounds found in leaf and fruit essential oils (EOs) were monoterpene hydrocarbons, namely -phellandrene, β-phellandrene, β-myrcene, limonene and α-pinene. EOs showed low scavenging antioxidant activity by the DPPH free radical method and a higher activity by the β-carotene/linoleic acid method. Antimicrobial activity of EOs was observed for Gram+, Gram– pathogenic bacteria and food spoilage fungi. EOs showed cytotoxicity for Artemia salina and lower toxicity in Swiss mice.
Conclusions: The result showed that EOs of leaves and fruits of S. molle demonstrated antioxidant and antimicrobial properties, suggesting their potential use in food or pharmaceutical industries
Pulse oximetry in the detection of congenital heart disease. Strategies for implementing a screening program.
As cardiopatias são o grupo mais comum de anomalias congénitas.
Neste grupo, 25% são consideradas críticas e necessitam
de cirurgia ou cateterismo de intervenção durante o 1º
ano de vida. O diagnóstico atempado e precoce destas situações
melhora o prognóstico, diminuindo a morbi-mortalidade
associada. Tem havido um grande interesse na utilização da
oximetria de pulso como método de rastreio das cardiopatias
congénitas. A justificação para o seu uso reside no facto de
nalgumas cardiopatias congénitas críticas, haver algum grau
de hipoxémia mesmo antes da cianose ser clinicamente evidente.
A oximetria de pulso é um teste não invasivo, não doloroso,
fácil de executar, com grande fiabilidade na avaliação
da hipoxémia. Dada a evidência cientifica, a exequibilidade,
segurança e ganhos potenciais em saúde com a aplicação
do teste, parece haver razões para a realização do rastreio
de forma universal. Descreve-se a metodologia utilizada na
implementação numa maternidade do rastreio de cardiopatia
congénita com oximetria de pulso
- …
