272 research outputs found

    Accumulation of driver and passenger mutations during tumor progression

    Get PDF
    Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a novel mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development - providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate, for the first time, the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small, 0.005 +- 0.0005, and has major implications for experimental cancer research

    Heterogeneity in multistage carcinogenesis and mixture modeling

    Get PDF
    Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune

    Systems biological and mechanistic modelling of radiation-induced cancer

    Get PDF
    This paper summarises the five presentations at the First International Workshop on Systems Radiation Biology that were concerned with mechanistic models for carcinogenesis. The mathematical description of various hypotheses about the carcinogenic process, and its comparison with available data is an example of systems biology. It promises better understanding of effects at the whole body level based on properties of cells and signalling mechanisms between them. Of these five presentations, three dealt with multistage carcinogenesis within the framework of stochastic multistage clonal expansion models, another presented a deterministic multistage model incorporating chromosomal aberrations and neoplastic transformation, and the last presented a model of DNA double-strand break repair pathways for second breast cancers following radiation therapy

    A Heuristic Solution of the Identifiability Problem of the Age-Period-Cohort Analysis of Cancer Occurrence: Lung Cancer Example

    Get PDF
    Background: The Age–Period–Cohort (APC) analysis is aimed at estimating the following effects on disease incidence: (i) the age of the subject at the time of disease diagnosis; (ii) the time period, when the disease occurred; and (iii) the date of birth of the subject. These effects can help in evaluating the biological events leading to the disease, in estimating the influence of distinct risk factors on disease occurrence, and in the development of new strategies for disease prevention and treatment. Methodology/Principal Findings: We developed a novel approach for estimating the APC effects on disease incidence rates in the frame of the Log-Linear Age-Period-Cohort (LLAPC) model. Since the APC effects are linearly interdependent and cannot be uniquely estimated, solving this identifiability problem requires setting four redundant parameters within a set of unknown parameters. By setting three parameters (one of the time-period and the birth-cohort effects and the corresponding age effect) to zero, we reduced this problem to the problem of determining one redundant parameter and, used as such, the effect of the time-period adjacent to the anchored time period. By varying this identification parameter, a family of estimates of the APC effects can be obtained. Using a heuristic assumption that the differences between the adjacent birth-cohort effects are small, we developed a numerical method for determining the optimal value of the identification parameter, by which a unique set of all APC effects is determined and the identifiability problem is solved
    corecore