127 research outputs found

    Lyapunov Control on Quantum Open System in Decoherence-free Subspaces

    Full text link
    A scheme to drive and manipulate a finite-dimensional quantum system in the decoherence-free subspaces(DFS) by Lyapunov control is proposed. Control fields are established by Lyapunov function. This proposal can drive the open quantum system into the DFS and manipulate it to any desired eigenstate of the free Hamiltonian. An example which consists of a four-level system with three long-lived states driven by two lasers is presented to exemplify the scheme. We have performed numerical simulations for the dynamics of the four-level system, which show that the scheme works good.Comment: 5 pages, 6 figure

    Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity

    Full text link
    We introduce a new gate that transfers an arbitrary state of a qubit into a superposition of two quasi-orthogonal coherent states of a cavity mode, with opposite phases. This qcMAP gate is based on conditional qubit and cavity operations exploiting the energy level dispersive shifts, in the regime where they are much stronger than the cavity and qubit linewidths. The generation of multi-component superpositions of quasi-orthogonal coherent states, non-local entangled states of two resonators and multi-qubit GHZ states can be efficiently achieved by this gate

    Hardware-efficient autonomous quantum error correction

    Full text link
    We propose a new method to autonomously correct for errors of a logical qubit induced by energy relaxation. This scheme encodes the logical qubit as a multi-component superposition of coherent states in a harmonic oscillator, more specifically a cavity mode. The sequences of encoding, decoding and correction operations employ the non-linearity provided by a single physical qubit coupled to the cavity. We layout in detail how to implement these operations in a practical system. This proposal directly addresses the task of building a hardware-efficient and technically realizable quantum memory.Comment: 12 pages,6 figure

    Mathematical modelling of phenotypic selection with solid tumours

    Get PDF
    We present a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of oxygen and therapeutic agents in mediating phenotypic selection of cancer cells. Numerical simulations are performed on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. Our modelling extends our previous work in the area through the inclusion of multiple therapeutic agents, one that is cytostatic, whilst the other is cytotoxic. In agreement with our previous work, the results show that spatial inhomogeneities in oxygen and therapeutic agent concentrations, which emerge spontaneously in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. A novel conclusion we infer from the simulations and analysis is that, for the same total dose, therapeutic protocols based on a combination of cytotoxic and cytostatic agents can be more effective than therapeutic protocols relying solely on cytotoxic agents in reducing the number of viable cancer cells

    Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states

    Full text link
    We propose a quantum feedback scheme for the preparation and protection of photon number states of light trapped in a high-Q microwave cavity. A quantum non-demolition measurement of the cavity field provides information on the photon number distribution. The feedback loop is closed by injecting into the cavity a coherent pulse adjusted to increase the probability of the target photon number. The efficiency and reliability of the closed-loop state stabilization is assessed by quantum Monte-Carlo simulations. We show that, in realistic experimental conditions, Fock states are efficiently produced and protected against decoherence.Comment: 8 pages, 5 figure

    Explicit approximate controllability of the Schr\"odinger equation with a polarizability term

    Full text link
    We consider a controlled Schr\"odinger equation with a dipolar and a polarizability term, used when the dipolar approximation is not valid. The control is the amplitude of the external electric field, it acts non linearly on the state. We extend in this infinite dimensional framework previous techniques used by Coron, Grigoriu, Lefter and Turinici for stabilization in finite dimension. We consider a highly oscillating control and prove the semi-global weak H2H^2 stabilization of the averaged system using a Lyapunov function introduced by Nersesyan. Then it is proved that the solutions of the Schr\"odinger equation and of the averaged equation stay close on every finite time horizon provided that the control is oscillating enough. Combining these two results, we get approximate controllability to the ground state for the polarizability system

    Stabilizing a Bell state of two superconducting qubits by dissipation engineering

    Full text link
    We propose a dissipation engineering scheme that prepares and protects a maximally entangled state of a pair of superconducting qubits. This is done by off-resonantly coupling the two qubits to a low-Q cavity mode playing the role of a dissipative reservoir. We engineer this coupling by applying six continuous-wave microwave drives with appropriate frequencies. The two qubits need not be identical. We show that our approach does not require any fine-tuning of the parameters and requires only that certain ratios between them be large. With currently achievable coherence times, simulations indicate that a Bell state can be maintained over arbitrary long times with fidelities above 94%. Such performance leads to a significant violation of Bell's inequality (CHSH correlation larger than 2.6) for arbitrary long times.Comment: 5 pages, 4 figure
    corecore