204 research outputs found

    Picosecond time-resolved fluorescence of phycobiliproteins

    Get PDF
    The α- and β-subunits of C-phycocyanin from Mastigocladus laminosus were prepared according to revised procedures. Both subunits are isolated as dimers, which can be dissociated into monomers with detergent mixtures. The fluorescence decay kinetics are similar for the respective monomers and dimers. In no case could they be fitted by only one (α-subunit) or two exponentials (β-subunit) which are predicted by theory for samples with a unique chromophore—protein arrangement containing one and two chromophores, respectively. It is suggested that there exists a heterogeneity among the chromophores of the subunits, which may persist in the highly aggregated complexes present in cyanobacterial antennas

    Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus

    Get PDF
    Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to rubins , bleaching , photoisomerization , or perturbation with bulky substituents. Pigments containing modified chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the (aß)-protomers of these pigments to higher aggregates. The results demonstrate a pronounced effect of the state of the chromophores on biliprotein quaternary structure. It may be important in phycobi1isome assembly , and also in the dual function of biliproteins as (i) antenna pigments for photosynthesis and (ii) reaction centers for photomor-phogenesis

    Molecular basis for governing the morphology of type-I collagen fibrils by Osteomodulin

    Get PDF
    Small leucine-rich repeat proteoglycan (SLRP) proteins have an important role in the organization of the extracellular matrix, especially in the formation of collagen fibrils. However, the mechanism governing the shape of collagen fibrils is poorly understood. Here, we report that the protein Osteomodulin (OMD) of the SLRP family is a monomeric protein in solution that interacts with type-I collagen. This interaction is dominated by weak electrostatic forces employing negatively charged residues of OMD, in particular Glu284 and Glu303, and controlled by entropic factors. The protein OMD establishes a fast-binding equilibrium with collagen, where OMD may engage not only with individual collagen molecules, but also with the growing fibrils. This weak electrostatic interaction is carefully balanced so it modulates the shape of the fibrils without compromising their viability

    Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells

    Get PDF
    Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host

    Helicobacter pylori cag-Pathogenicity Island-Dependent Early Immunological Response Triggers Later Precancerous Gastric Changes in Mongolian Gerbils

    Get PDF
    Infection with Helicobacter pylori, carrying a functional cag type IV secretion system (cag-T4SS) to inject the Cytotoxin associated antigen (CagA) into gastric cells, is associated with an increased risk for severe gastric diseases in humans. Here we studied the pathomechanism of H. pylori and the role of the cag-pathogenicity island (cag-PAI) for the induction of gastric ulcer and precancerous conditions over time (2–64 weeks) using the Mongolian gerbil model. Animals were challenged with H. pylori B128 (WT), or an isogenic B128ΔcagY mutant-strain that produces CagA, but is unable to translocate it into gastric cells. H. pylori colonization density was quantified in antrum and corpus mucosa separately. Paraffin sections were graded for inflammation and histological changes verified by immunohistochemistry. Physiological and inflammatory markers were quantitated by RIA and RT-PCR, respectively. An early cag-T4SS-dependent inflammation of the corpus mucosa (4–8 weeks) occurred only in WT-infected animals, resulting in a severe active and chronic gastritis with a significant increase of proinflammatory cytokines, mucous gland metaplasia, and atrophy of the parietal cells. At late time points only WT-infected animals developed hypochlorhydria and hypergastrinemia in parallel to gastric ulcers, gastritis cystica profunda, and focal dysplasia. The early cag-PAI-dependent immunological response triggers later physiological and histopathological alterations towards gastric malignancies

    Regulation of RKIP Function by Helicobacter pylori in Gastric Cancer

    Get PDF
    Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that infects more than half of the world’s population and is a major cause of gastric adenocarcinoma. The mechanisms that link H. pylori infection to gastric carcinogenesis are not well understood. In the present study, we report that the Raf-kinase inhibitor protein (RKIP) has a role in the induction of apoptosis by H. pylori in gastric epithelial cells. Western blot and luciferase transcription reporter assays demonstrate that the pathogenicity island of H. pylori rapidly phosphorylates RKIP, which then localizes to the nucleus where it activates its own transcription and induces apoptosis. Forced overexpression of RKIP enhances apoptosis in H. pylori-infected cells, whereas RKIP RNA inhibition suppresses the induction of apoptosis by H. pylori infection. While inducing the phosphorylation of RKIP, H. pylori simultaneously targets non-phosphorylated RKIP for proteasome-mediated degradation. The increase in RKIP transcription and phosphorylation is abrogated by mutating RKIP serine 153 to valine, demonstrating that regulation of RKIP activity by H. pylori is dependent upon RKIP’s S153 residue. In addition, H. pylori infection increases the expression of Snail, a transcriptional repressor of RKIP. Our results suggest that H. pylori utilizes a tumor suppressor protein, RKIP, to promote apoptosis in gastric cancer cells

    Associations of a PTPN11 G/A polymorphism at intron 3 with Helicobactor pylori seropositivity, gastric atrophy and gastric cancer in Japanese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have revealed the significance of <it>Helicobacter pylori </it>(<it>H. pylori</it>) infection as a risk factor of gastric cancer. Cytotoxin-associated gene A (<it>cagA</it>) positivity has been demonstrated to determine the clinical outcome of <it>H. pylori </it>infection in the presence of SHP-2 (src homology 2 domain-containing protein tyrosine phosphatase-2). This study aimed to examine the formerly reported association of G/A <it>PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) </it>polymorphism (rs2301756) with gastric atrophy, as well as the association with gastric cancer in a Japanese population using a large sample size.</p> <p>Methods</p> <p>Study subjects were 583 histologically diagnosed patients with gastric cancer (429 males and 154 females) and age- and sex-frequency-matched 1,636 non-cancer outpatients (1,203 males and 433 females), who visited Aichi Cancer Center Hospital between 2001–2005. Serum anti-<it>H. pylori </it>IgG antibody and pepsinogens were measured to evaluate <it>H. pylori </it>infection and gastric atrophy, respectively. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by a logistic model.</p> <p>Results</p> <p>Among <it>H. pylori </it>seropositive non-cancer outpatients, the age- and sex-adjusted OR of gastric atrophy was 0.82 (95% CI 0.62–1.10, <it>P </it>= 0.194) for <it>G/A</it>, 0.84 (95% CI 0.39–1.81, <it>P </it>= 0.650) for <it>A/A</it>, and 0.83 (95% CI 0.62–1.09, <it>P </it>= 0.182) for <it>G/A</it>+<it>A/A</it>, relative to <it>G/G </it>genotype, and that of severe gastric atrophy was 0.70 (95% CI 0.47–1.04, <it>P </it>= 0.079), 0.56 (95% CI 0.17–1.91, <it>P </it>= 0.356), and 0.68 (95% CI 0.46–1.01, <it>P </it>= 0.057), respectively. Among <it>H. pylori </it>infected subjects (<it>H. pylori </it>seropositive subjects and seronegative subjects with gastric atrophy), the adjusted OR of severe gastric atrophy was further reduced; 0.62 (95% CI 0.42–0.90, <it>P </it>= 0.012) for <it>G/A</it>+<it>A/A</it>. The distribution of the genotype in patients with gastric cancer was not significantly different from that for <it>H. pylori </it>infected subjects without gastric atrophy.</p> <p>Conclusion</p> <p>Our study results revealed that those with the <it>A/A </it>genotype of <it>PTPN11 </it>rs2301756 polymorphism are at lower risk of severe gastric atrophy, but are not associated with a decreased risk of gastric cancer, which partially supported our previous finding that the polymorphism in the <it>PTPN11 </it>gene encoding SHP-2 was associated with the gastric atrophy risk in <it>H. pylori </it>infected Japanese. The biological roles of this <it>PTPN11 </it>polymorphism require further investigation.</p

    Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface

    Get PDF
    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche

    Helicobacter pylori CagA Triggers Expression of the Bactericidal Lectin REG3γ via Gastric STAT3 Activation

    Get PDF
    Background: Most of what is known about the Helicobacter pylori (H. pylori) cytotoxin, CagA, pertains to a much-vaunted role as a determinant of gastric inflammation and cancer. Little attention has been devoted to potential roles of CagA in the majority of H. pylori infected individuals not showing oncogenic progression, particularly in relation to host tolerance. Regenerating islet-derived (REG)3c encodes a secreted C-type lectin that exerts direct bactericidal activity against Grampositive bacteria in the intestine. Here, we extend this paradigm of lectin-mediated innate immunity, showing that REG3c expression is triggered by CagA in the H. pylori-infected stomach. Methodology/Principal Findings: In human gastric mucosal tissues, REG3c expression was significantly increased in CagApositive, compared to CagA-negative H. pylori infected individuals. Using transfected CagA-inducible gastric MKN28 cells, we recapitulated REG3c induction in vitro, also showing that tyrosine phosphorylated, not unphosphorylated CagA triggers REG3c transcription. In concert with induced REG3c, pro-inflammatory signalling downstream of the gp130 cytokine coreceptor via the signal transducer and activator of transcription (STAT)3 and transcription of two cognate ligands, interleukin(IL)-11 and IL-6, were significantly increased. Exogenous IL-11, but not IL-6, directly stimulated STAT3 activation and REG3c transcription. STAT3 siRNA knockdown or IL-11 receptor blockade respectively abrogated or subdued CagAdependent REG3c mRNA induction, thus demonstrating a requirement for uncompromised signalling via the IL-11/STAT
    corecore