331 research outputs found

    Weather on Other Worlds. IV. Hα\alpha emission and photometric variability are not correlated in L0−-T8 dwarfs

    Full text link
    Recent photometric studies have revealed that surface spots that produce flux variations are present on virtually all L and T dwarfs. Their likely magnetic or dusty nature has been a much-debated problem, the resolution to which has been hindered by paucity of diagnostic multi-wavelength observations. To test for a correlation between magnetic activity and photometric variability, we searched for Hα\alpha emission among eight L3−-T2 ultra-cool dwarfs with extensive previous photometric monitoring, some of which are known to be variable at 3.6 μ\mum or 4.5 μ\mum. We detected Hα\alpha only in the non-variable T2 dwarf 2MASS J12545393−-0122474. The remaining seven objects do not show Hα\alpha emission, even though six of them are known to vary photometrically. Combining our results with those for 86 other L and T dwarfs from the literature show that the detection rate of Hα\alpha emission is very high (94%\%) for spectral types between L0 and L3.5 and much smaller (20%\%) for spectral types ≥\geL4, while the detection rate of photometric variability is approximately constant (30%−\%-55%\%) from L0 to T8 dwarfs. We conclude that chromospheric activity, as evidenced by Hα\alpha emission, and large-amplitude photometric variability are not correlated. Consequently, dust clouds are the dominant driver of the observed variability of ultra-cool dwarfs at spectral types at least as early as L0.Comment: 12 pages, 4 figures, accepted for publication in Ap

    Integrated-light Two Micron All Sky Survey infrared photometry of Galactic globular clusters

    Get PDF
    We have mosaicked Two Micron All Sky Survey (2MASS) images to derive surface brightness profiles in J, H, and K_s for 104 Galactic globular clusters. We fit these with King profiles and show that the core radii are identical to within the errors for each of these IR colors and are identical to the core radii at V in essentially all cases. We derive integrated-light colors V-J, V-H, V-K_s, J-H, and J-Ks for these globular clusters. Each color shows a reasonably tight relation between the dereddened colors and metallicity. Fits to these are given for each color. The IR-IR colors have very small errors, due largely to the all-sky photometric calibration of the 2MASS survey, while the V-IR colors have substantially larger uncertainties. We find fairly good agreement with measurements of integrated-light colors for a smaller sample of Galactic globular clusters by M. Aaronson, M. Malkan, and D. Kleinmann from 1977. Our results provide a calibration for the integrated light of distant single-burst old stellar populations from very low to solar metallicities. A comparison of our dereddened measured colors with predictions from several models of the integrated light of single-burst old populations shows good agreement in the low-metallicity domain for V-K_s colors but also shows an offset at a fixed [Fe/H] of ~0.1 mag in J-K_s, which we ascribe to photometric system transformation issues. Some of the models fail to reproduce the behavior of the integrated-light colors of the Galactic globular clusters near solar metallicity

    Integrated Light 2MASS IR Photometry of Galactic Globular Clusters

    Full text link
    We have mosaiced 2MASS images to derive surface brightness profiles in JHK for 104 Galactic globular clusters. We fit these with King profiles, and show that the core radii are identical to within the errors for each of these IR colors, and are identical to the core radii at V in essentially all cases. We derive integrated light colors V-J, V-H, V-K_s, J-H and J-K_s for these globular clusters. Each color shows a reasonably tight relation between the dereddened colors and metallicity. Fits to these are given for each color. The IR--IR colors have very small errors due largely to the all-sky photometric calibration of the 2MASS survey, while the V-IR colors have substantially larger uncertainties. We find fairly good agreement with measurements of integrated light colors for a smaller sample of Galactic globular clusters by Aaronson, Malkan & Kleinmann from 1977. Our results provide a calibration for the integrated light of distant single burst old stellar populations from very low to Solar metallicities. A comparison of our dereddened measured colors with predictions from several models of the integrated light of single burst old populations shows good agreement in the low metallicity domain for V-K_s colors, but an offset at a fixed [Fe/H] of ~0.1 mag in J-K_s, which we ascribe to photometric system transformation issues. Some of the models fail to reproduce the behavior of the integrated light colors of the Galactic globular clusters near Solar metallicity.Comment: Accepted for publication in the A

    Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements

    Full text link
    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at >>3σ\sigma. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ2\chi^2 consistent to within 1σ\sigma of the best fit values, suggesting that if inclination offsets of ≲\lesssim20o^{o} are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ\sigma with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A

    Collisional modelling of the AU Microscopii debris disc

    Full text link
    The spatially resolved AU Mic debris disc is among the most famous and best-studied debris discs. We aim at a comprehensive understanding of the dust production and the dynamics of the disc objects with in depth collisional modelling including stellar radiative and corpuscular forces. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3mm to polarisation measurements in the visible. Most of the data can be reproduced with a planetesimal belt having an outer edge at around 40au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5au and 17au wide, as well as a broad 44au-wide belt are consistent with observations. All models show surface density profiles increasing with distance from the star as inferred from observations. The best model is achieved by assuming a stellar mass loss rate that exceeds the solar one by a factor of 50. While the SED and the shape of the ALMA profile are well reproduced, the models deviate from the scattered light data more strongly. The observations show a bluer disc colour and a lower degree of polarisation for projected distances <40au than predicted by the models. The problem may be mitigated by irregularly-shaped dust grains which have scattering properties different from the Mie spheres used. From tests with a handful of selected dust materials, we derive a preference for mixtures of silicate, carbon, and ice of moderate porosity. We address the origin of the unresolved central excess emission detected by ALMA and show that it cannot stem from an additional inner belt alone. Instead, it should derive, at least partly, from the chromosphere of the central star.Comment: Astronomy and Astrophysics (accepted for publication), 18 pages, 11 figure

    Weather on Other Worlds. II. Survey Results: Spots Are Ubiquitous on L and T Dwarfs

    Full text link
    We present results from the "Weather on Other Worlds" Spitzer Exploration Science program to investigate photometric variability in L and T dwarfs, usually attributed to patchy clouds. We surveyed 44 L3-T8 dwarfs, spanning a range of J−KsJ-K_s colors and surface gravities. We find that 14/23 (61%; 95% confidence interval: 41%-78%) of our single L3-L9.5 dwarfs are variable with peak-to-peak amplitudes between 0.2% and 1.5%, and 5/16 (31%; 95% confidence interval: 14%-56%) of our single T0-T8 dwarfs are variable with amplitudes between 0.8% and 4.6%. After correcting for sensitivity, we find that 80% (95% confidence interval: 53%-100%) of L dwarfs vary by >0.2%, and 36% (95% confidence interval: 19%-52%) of T dwarfs vary by >0.4%. Given viewing geometry considerations, we conclude that photospheric heterogeneities causing >0.2% 3-5-micron flux variations are present on virtually all L dwarfs, and probably on most T dwarfs. A third of L dwarf variables show irregular light curves, indicating that L dwarfs may have multiple spots that evolve over a single rotation. Also, approximately a third of the periodicities are on time scales >10 h, suggesting that slowly-rotating brown dwarfs may be common. We observe an increase in the maximum amplitudes over the entire spectral type range, revealing a potential for greater temperature contrasts in T dwarfs than in L dwarfs. We find a tentative association (92% confidence) between low surface gravity and high-amplitude variability among L3-L5.5 dwarfs. Although we can not confirm whether lower gravity is also correlated with a higher incidence of variables, the result is promising for the characterization of directly imaged young extrasolar planets through variability.Comment: 42 pages, 11 figures, 2 tables, accepted by Ap

    A discontinuity in the low-mass initial mass function

    Full text link
    The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribution functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1 reference added after being accepted by the Ap

    A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs

    Get PDF
    We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5 +093347, WISEPC 150649.97+702736.0, and WISEPA J174124.26+255319.5.We have placed robust 3s upper limits on the flux density in the 111 – 169 MHz frequency range for these targets: WISE 1506: &lt; 0:72 mJy; WISE 1741: &lt; 0:87 mJy; SIMP 0136: &lt; 0:66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources
    • …
    corecore