534 research outputs found

    The Impact of Obesity on Physiologic Indicators

    Get PDF
    Obesity results in an alteration in the stress response that often results in adverse perinatal outcomes. This study investigated physiologic changes in 21 obese and 20 overweight women during pregnancy and the impact on vagal response (heart period and respiratory sinus arrhythmia), oxygenation, hemoglobin A1c (HbA1c) and systolic blood pressure at 20, 28 and 36 weeks of gestation. The impact of obesity on perinatal outcomes was investigated. Blood oxygen, systolic blood pressure, and HbA1c levels were significantly higher for the obese women as compared with overweight women. Monitoring physiologic mal-adaptation may permit early detection and intervention to improve perinatal outcomes

    Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand

    Get PDF
    AbstractRecombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO

    Analysis of energy expenditure in diet-induced obese rats

    Full text link
    Development of obesity in animals is affected by energy intake, dietary composition, and metabolism. Useful models for studying this metabolic problem are Sprague-Dawley rats fed low-fat (LF) or high-fat (HF) diets beginning at 28 days of age. Through experimental design, their dietary intakes of energy, protein, vitamins, and minerals per kg body weight (BW) do not differ in order to eliminate confounding factors in data interpretation. The 24-h energy expenditure of rats is measured using indirect calorimetry. A regression model is constructed to accurately predict BW gain based on diet, initial BW gain, and the principal component scores of respiratory quotient and heat production. Time-course data on metabolism (including energy expenditure) are analyzed using a mixed effect model that fits both fixed and random effects. Cluster analysis is employed to classify rats as normal-weight or obese. HF-fed rats are heavier than LF-fed rats, but rates of their heat production per kg non-fat mass do not differ. We conclude that metabolic conversion of dietary lipids into body fat primarily contributes to obesity in HF-fed rats

    Systems-Based Design of Bi-Ligand Inhibitors of Oxidoreductases: Filling the Chemical Proteomic Toolbox

    Get PDF
    Genomics-driven growth in the number of enzymes of unknown function has created a need for better strategies to characterize them. Since enzyme inhibitors have traditionally served this purpose, we present here an efficient systems-based inhibitor design strategy, enabled by bioinformatic and NMR structural developments. First, we parse the oxidoreductase gene family into structural subfamilies termed pharmacofamilies, which share pharmacophore features in their cofactor binding sites. Then we identify a ligand for this site and use NMR-based binding site mapping (NMR SOLVE) to determine where to extend a combinatorial library, such that diversity elements are directed into the adjacent substrate site. The cofactor mimic is reused in the library in a manner that parallels the reuse of cofactor domains in the oxidoreductase gene family. A library designed in this manner yielded specific inhibitors for multiple oxidoreductases

    MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells

    No full text
    The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor kappa B (NF-kappa B) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1 alpha as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-kappa B signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-kappa B activation in lymphocytes and survival of lymphoma cells

    Switching behaviour in vascular smooth muscle cell–matrix adhesion during oscillatory loading

    Get PDF
    Integrins regulate mechanotransduction between smooth muscle cells (SMCs) and the extracellular matrix (ECM). SMCs resident in the walls of airways or blood vessels are continuously exposed to dynamic mechanical forces due to breathing or pulsatile blood flow. However, the resulting effects of these forces on integrin dynamics and associated cell-matrix adhesion are not well understood. Here we present experimental results from atomic force microscopy (AFM) experiments, designed to study the integrin response to external oscillatory loading of varying amplitudes applied to live aortic SMCs, together with theoretical results from a mathematical model. In the AFM experiments, a fibronectin-coated probe was used cyclically to indent and retract from the surface of the cell. We observed a transition between states of firm adhesion and of complete detachment as the amplitude of oscillatory loading increased, revealed by qualitative changes in the force timecourses. Interestingly, for some of the SMCs in the experiments, switching behaviour between the two adhesion states is observed during single timecourses at intermediate amplitudes. We obtain two qualitatively similar adhesion states in the mathematical model, where we simulate the cell, integrins and ECM as an evolving system of springs, incorporating local integrin binding dynamics. In the mathematical model, we observe a region of bistability where both the firm adhesion and detachment states can occur depending on the initial adhesion state. The differences are seen to be a result of mechanical cooperativity of integrins and cell deformation. Switching behaviour is a phenomenon associated with bistability in a stochastic system, and bistability in our deter-ministic mathematical model provides a potential physical explanation for the experimental results. Physiologically, bistability provides a means for transient mechanical stimuli to induce long-term changes in adhesion dynamics-and thereby the cells' ability to transmit force-and we propose further experiments for testing this hypothesis
    • …
    corecore