10,963 research outputs found

    No Evidence for a Aystematic FEII Emission Line Redshift in Type 1 AGN

    Full text link
    We test the recent claim by Hu et al. (2008) that FeII emission in Type 1 AGN shows a systematic redshift relative to the local source rest frame and broad-line Hbeta. We compile high s/n median composites using SDSS spectra from both the Hu et al. sample and our own sample of the 469 brightest DR5 spectra. Our composites are generated in bins of FWHM Hbeta and FeII strength as defined in our 4D Eigenvector 1 (4DE1) formalism. We find no evidence for a systematic FeII redshift and consistency with previous assumptions that FeII shift and width (FWHM) follow Hbeta shift and FWHM in virtually all sources. This result is consistent with the hypothesis that FeII emission (quasi-ubiquitous in type 1 sources) arises from a broad-line region with geometry and kinematics the same as that producing the Balmer lines.Comment: 12 pages, 1 table, 1 figure - accepted for publication in ApJ Letter

    Groundbased near-IR observations of the surface of Venus

    Get PDF
    We present images of the nightside of Venus taken in the near-infrared windows at 1.0, 1.1, 1.18, 1.28, 1.31, and 2.3 microns with the new infrared camera/spectrometer IRIS on the Anglo-Australian Telescope. These data were taken in spectral-mapping mode. This technique involves scanning the telescope perpendicular to the slit, while collecting spectra at successive slit positions across the planet. We produce data cubes with one spectral and two spatial dimensions. Images can be extracted over any wavelength regions. Each image has square pixels of 0.8 inch resolution. We reduced the scattered light from the sunlit crescent in images extracted from each window by subtracting images taken on either side of the window, where the Venus atmosphere is opaque. Unlike the short wavelength windows, which reveal thermal contrasts that originate primarily from the surface and deep atmosphere, the emission in the 2.3 microns window is produced at much higher altitudes (30-40 km). Emission contrasts seen near 2.3 microns are associated with horizontal variations in the cloud optical depths, and have rotation periods of about six days. We detect large contrasts in infrared emission (20-40 percent) across the disc of Venus in the 1.0-, 1.1-, 1.18-, 1.28-, and 1.31-micron images. Contrasts at these wavelengths may be due to a combination of variations in the optical depths of the overlying sulfuric acid clouds and differences in surface emission. Comparison with the 2.3-micron images show that the patterns seen in the 1.28- and 1.31-micron windows are consistent with cloud optical depth variations alone and require no contribution from the surface. However, images at 1.0, 1.1, and 1.8 microns from July 1991 show a dark feature having a contrast that increases with decreasing wavelength. This behavior is contrary to that expected of cloud absorption. Images taken on three successive days in October show another dark feature that is stationary with respect to the surface. These regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere

    Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres

    Full text link
    Early Earth may have hosted a biologically-mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ~ 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases, and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 {\mu}m, likely, the most accessible CO2 feature on an Archean-like exoplanet.Comment: accepted for publication in Astrobiolog
    corecore