186 research outputs found

    Dirichlet boundary value problem for Chern-Simons modified gravity

    Full text link
    Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary value problem well-defined. It turns out to be a boundary Chern-Simons action for the extrinsic curvature. We address applications to black hole thermodynamics.Comment: 4 pages, revtex4, v2: added Refs., made one statement stronger, added footnote and added paragraph on single field inflatio

    The Interplay Between Ξ\theta and T

    Full text link
    We extend a recent computation of the dependence of the free energy, F, on the noncommutative scale Ξ\theta to theories with very different UV sensitivity. The temperature dependence of FF strongly suggests that a reduced number of degrees of freedom contributes to the free energy in the non-planar sector, FnpF_{\rm np}, at high temperature. This phenomenon seems generic, independent of the UV sensitivity, and can be traced to modes whose thermal wavelengths become smaller than the noncommutativity scale. The temperature dependence of FnpF_{\rm np} can then be calculated at high temperature using classical statistical mechanics, without encountering a UV catastrophe even in large number of dimensions. This result is a telltale sign of the low number of degrees of freedom contributing to FF in the non-planar sector at high temperature. Such behavior is in marked contrast to what would happen in a field theory with a random set of higher derivative interactions.Comment: 14 pages, 1 eps figur

    UV-divergences of Wilson Loops for Gauge/Gravity Duality

    Full text link
    We analyze the structure of the UV divergences of the Wilson loop for a general gauge/gravity duality. We find that, due to the presence of a nontrivial NSNS B-field and metric, new divergences that cannot be subtracted out by the conventional Legendre transform may arise. We also derive conditions on the B-field and the metric, which when satisfied, the leading UV divergence will become linear, and can be cancelled out by choosing the boundary condition of the string appropriately. Our results, together with the recent result of arXiv:0807.5127, where the effect of a nontrivial dilaton on the structure of UV divergences in Wilson loop is analysed, allow us to conclude that Legendre transform is at best capable of cancelling the linear UV divergences arising from the area of the worldsheet, but is incapable to handle the divergences associated with the dilaton or the B-field in general. We also solve the conditions for the cancellation of the leading linear divergences generally and find that many well-known supergravity backgrounds are of these kinds, including examples such as the Sakai-Sugimoto QCD model or N=1 duality with Sasaki-Einstein spaces. We also point out that Wilson loop in the Klebanov-Strassler background have a divergence associated with the B-field which cannot be cancelled away with the Legendre transform. Finally we end with some comments on the form of the Wilson loop operator in the ABJM superconformal Chern-Simons theory.Comment: 26 pages. LaTeX. v2: reference added. version to appear in JHE

    Thermodynamics of Black Holes in Two (and Higher) Dimensions

    Get PDF
    A comprehensive treatment of black hole thermodynamics in two-dimensional dilaton gravity is presented. We derive an improved action for these theories and construct the Euclidean path integral. An essentially unique boundary counterterm renders the improved action finite on-shell, and its variational properties guarantee that the path integral has a well-defined semi-classical limit. We give a detailed discussion of the canonical ensemble described by the Euclidean partition function, and examine various issues related to stability. Numerous examples are provided, including black hole backgrounds that appear in two dimensional solutions of string theory. We show that the Exact String Black Hole is one of the rare cases that admits a consistent thermodynamics without the need for an external thermal reservoir. Our approach can also be applied to certain higher-dimensional black holes, such as Schwarzschild-AdS, Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference

    Winding effects on brane/anti-brane pairs

    Full text link
    We study a brane/anti-brane configuration which is separated along a compact direction by constructing a tachyon effective action which takes into account transverse scalars. Such an action is relevant in the study of HQCD model of Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact circle sets the confinement scale. Our approach is motivated by string theory orbifold constructions and gives a route to model inhomogeneous tachyon decay. We illustrate the techniques involved with a relatively simple example of a harmonic oscillator on a circle. We will then repeat the analysis for the Sakai-Sugimoto model and show that by integrating out the winding modes will provide us with a renormalized action with a lower energy than that of truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published versio

    N-body Gravity and the Schroedinger Equation

    Get PDF
    We consider the problem of the motion of NN bodies in a self-gravitating system in two spacetime dimensions. We point out that this system can be mapped onto the quantum-mechanical problem of an N-body generalization of the problem of the H2+_{2}^{+} molecular ion in one dimension. The canonical gravitational N-body formalism can be extended to include electromagnetic charges. We derive a general algorithm for solving this problem, and show how it reduces to known results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version that appears in CQ

    Correlation Functions of Operators and Wilson Surfaces in the d=6, (0,2) Theory in the Large N Limit

    Full text link
    We compute the two and three-point correlation functions of chiral primary operators in the large N limit of the (0,2), d=6 superconformal theory. We also consider the operator product expansion of Wilson surfaces in the (0,2) theory and compute the OPE coefficients of the chiral primary operators at large N from the correlation functions of surfaces.Comment: 34 pages, using utarticle.cls (included), array.sty, amsmath.sty, amsfonts.sty, latexsym.sty, epsfig. Bibtex style: utphys.bst (.bbl file included

    String theory duals of Lifshitz-Chern-Simons gauge theories

    Full text link
    We propose candidate gravity duals for a class of non-Abelian z=2 Lifshitz Chern-Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern-Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang-Mills theory. Using the holographic dictionary, we identify the bulk fields that are dual to these deformations. The geometries describing the groundstates of the non-Abelian LCS gauge theories realized here exhibit a mass gap.Comment: 25+14 pages, 3 figures; v2: significant corrections regarding IR geometry, resulting in new section 5; journal versio

    Nuclear matter to strange matter transition in holographic QCD

    Full text link
    We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.Comment: 13 pages, 14 figure

    Inhibition of Cholinergic Signaling Causes Apoptosis in Human Bronchioalveolar Carcinoma

    Get PDF
    Recent case-controlled clinical studies show that bronchioalveolar carcinomas (BAC) are correlated with smoking. Nicotine, the addictive component of cigarettes, accelerates cell proliferation through nicotinic acetylcholine receptors (nAChR). In this study, we show that human BACs produce acetylcholine (ACh) and contain several cholinergic factors including acetylcholinesterase (AChE), choline acetyltransferase (ChAT), choline transporter 1 (CHT1, SLC5A7), vesicular acetylcholine transporter (VAChT, SLC18A3), and nACh receptors (AChRs, CHRNAs). Nicotine increased the production of ACh in human BACs, and ACh acts as a growth factor for these cells. Nicotine-induced ACh production was mediated by α7-, α3ÎČ2-, and ÎČ3-nAChRs, ChAT and VAChT pathways. We observed that nicotine upregulated ChAT and VAChT. Therefore, we conjectured that VAChT antagonists, such as vesamicol, may suppress the growth of human BACs. Vesamicol induced potent apoptosis of human BACs in cell culture and nude mice models. Vesamicol did not have any effect on EGF or insulin-like growth factor-II–induced growth of human BACs. siRNA-mediated attenuation of VAChT reversed the apoptotic activity of vesamicol. We also observed that vesamicol inhibited Akt phosphorylation during cell death and that overexpression of constitutively active Akt reversed the apoptotic activity of vesamicol. Taken together, our results suggested that disruption of nicotine-induced cholinergic signaling by agents such as vesamicol may have applications in BAC therapy
    • 

    corecore