5,456 research outputs found

    Particle number conservation in quantum many-body simulations with matrix product operators

    Full text link
    Incorporating conservation laws explicitly into matrix product states (MPS) has proven to make numerical simulations of quantum many-body systems much less resources consuming. We will discuss here, to what extent this concept can be used in simulation where the dynamically evolving entities are matrix product operators (MPO). Quite counter-intuitively the expectation of gaining in speed by sacrificing information about all but a single symmetry sector is not in all cases fulfilled. It turns out that in this case often the entanglement imposed by the global constraint of fixed particle number is the limiting factor.Comment: minor changes, 18 pages, 5 figure

    Phase Diagram of the 1D Kondo Lattice Model

    Full text link
    We determine the boundary of the fully polarized ferromagnetic ground state in the one dimensional Kondo lattice model at partial conduction electron band filling by using a newly developed infinite size DMRG method which conserves the total spin quantum number. The obtained paramagnetic to ferromagnetic phase boundary is below J3.5J \approx 3.5 for the whole range of band filling. By this we solve the controversy in the phase diagram over the extent of the ferromagnetic region close to half filling.Comment: 6 pages, 4 EPS figures. Presented at MOS9

    Neurophysiology

    Get PDF
    Contains a report on a research project.Bell Telephone Laboratories, IncorporatedTeagle FoundationNational Science Foundatio

    Magnetism in the dilute Kondo lattice model

    Get PDF
    The one dimensional dilute Kondo lattice model is investigated by means of bosonization for different dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase diagram is verified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic phase widens at the expense of the ferromagnetic phase as the ff-spins are diluted. For the incommensurate case, antiferromagnetism is found at low doping, which distinguishes the dilute Kondo lattice model from the standard Kondo lattice model.Comment: 11 pages, 2 figure

    Quasiparticles in the Kondo lattice model at partial fillings of the conduction band

    Get PDF
    We study the spectral properties of the one-dimensional Kondo lattice model as function of the exchange coupling, the band filling, and the quasimomentum in the ferromagnetic and paramagnetic phase. Using the density-matrix renormalization group method, we compute the dispersion relation of the quasiparticles, their lifetimes, and the Z-factor. As a main result, we provide evidence for the existence of the spinpolaron at partial band fillings. We find that the quasiparticle lifetime differs by orders of magnitude between the ferromagnetic and paramagnetic phase and depends strongly on the quasimomentum.Comment: 9 pages, 9 figure
    corecore