824 research outputs found

    Planckian Interacting Massive Particles as Dark Matter

    Get PDF
    The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than 0.01 Mp0.01\,\textrm{M}_p is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.Comment: 6 pages, 1 figure, Version published in PR

    Patient Observers and Non-perturbative Infrared Dynamics in Inflation

    Get PDF
    We have previously derived the effect of soft graviton modes on the quantum state of de Sitter using spontaneously broken asymptotic symmetries. In the present paper we reinterpret this effect in terms of particle production and relate the quantum states with and without soft modes by means of Bogoliubov transformations. This also enables us to address the much discussed issues regarding the observability of infrared effects in de Sitter from a new perspective. While it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a {\it patient observer} who has lived long enough to have a record of the state before the soft mode was created. Though classically there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties may censor the effect. We then apply our methods to find a non-perturbative description of the quantum state pertaining to the Page time of de Sitter, and derive with these new methods the probability distribution for the local quantum states of de Sitter and slow-roll inflation in the presence of long modes. Finally, we use this to formulate a precise criterion for the existence of eternal inflation in general classes of slow-roll inflation.Comment: 37 page

    Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    Get PDF
    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.Comment: 35 pages, 4 figures, matches published versio

    Theory and Phenomenology of Planckian Interacting Massive Particles as Dark Matter

    Get PDF
    Planckian Interacting Dark Matter (PIDM) is a minimal scenario of dark matter assuming only gravitational interactions with the standard model and with only one free parameter, the PIDM mass. PIDM can be successfully produced by gravitational scattering in the thermal plasma of the Standard Model sector after inflation in the PIDM mass range from TeV up to the GUT scale, if the reheating temperature is sufficiently high. The minimal assumption of a GUT scale PIDM mass can be tested in the future by measurements of the primordial tensor-to-scalar ratio. While large primordial tensor modes would be in tension with the QCD axion as dark matter in a large mass range, it would favour the PIDM as a minimal alternative to WIMPs. Here we generalise the previously studied scalar PIDM scenario to the case of fermion, vector and tensor PIDM scenarios, and show that the phenomenology is nearly identical, independent of the spin of the PIDM. We also consider the specific realisation of the PIDM as the Kaluza Klein excitation of the graviton in orbifold compactifications of string theory, as well as in models of monodromy inflation and in Higgs inflation. Finally we discuss the possibility of indirect detection of PIDM through non-perturbative decay.Comment: 41 pages, 9 figures, V2: typos correcte

    Optimising peak energy reduction in networks of buildings

    Get PDF
    Buildings are amongst the world’s largest energy consumers and simultaneous peaks in demand from networks of buildings can decrease electricity system stability. Current mitigation measures either entail wasteful supply-side over-specification or complex centralised demand-side control. Hence, a simple schema is developed for decentralised, self-organising building-to-building load coordination that requires very little information exchange and no top-down management—analogous to other complex systems with short range interactions, such as coordination between flocks of birds or synchronisation in fireflies. Numerical and experimental results reveal that a high degree of peak flattening can be achieved using surprisingly small load-coordination networks. The optimum reductions achieved by the simple schema can outperform existing techniques, giving substantial peak-reductions as well as being remarkably robust to changes in other system parameters such as the interaction network topology. This not only demonstrates that significant reductions in network peaks are achievable using remarkably simple control systems but also reveals interesting theoretical results and new insights which will be of great interest to the complexity and network science communities.</p

    Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror

    Full text link
    We show theoretically that it is possible to trap and cool the rotational motion of a macroscopic mirror made of a perfectly reflecting spiral phase element using orbital angular momentum transfer from a Laguerre-Gaussian optical field. This technique offers a promising route to the placement of the rotor in its quantum mechanical ground state in the presence of thermal noise. It also opens up the possibility of simultaneously cooling a vibrational mode of the same mirror. Lastly, the proposed design may serve as a sensitive torsional balance in the quantum regime.Comment: New cavity design, reworked title; to appear in Phys. Rev. Let

    Fermionic Symmetries: Extension of the two to one Relationship Between the Spectra of Even-Even and Neighbouring Odd mass Nuclei

    Full text link
    In the single j shell there is a two to one relationship between the spectra of certain even-even and neighbouring odd mass nuclei e.g. the calculated energy levels of J=0^+ states in ^{44}Ti are at twice the energies of corresponding levels in ^{43}Ti(^{43}Sc) with J=j=7/2. Here an approximate extension of the relationship is made by adopting a truncated seniority scheme i.e. for ^{46}Ti and ^{45}Sc we get the relationship if we do not allow the seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we get very close to the two to one relationship if seniority v=4 states are admixed perturbatively. In addition, it is shown that the higher isospin states do not contain seniority 4 admixtures.Comment: 11 pages, RevTex file and no figures, typos added, references changed and changed content

    Roles of proton-neutron interactions in alpha-like four-nucleon correlations

    Get PDF
    An extended pairing plus QQ force model, which has been shown to successfully explain the nuclear binding energy and related quantities such as the symmetry energy, is applied to study the alpha-like four-nucleon correlations in 1f_{7/2} shell nuclei. The double difference of binding energies, which displays a characteristic behavior at N≈ZN \approx Z, is interpreted in terms of the alpha-like correlations. Important roles of proton-neutron interactions forming the alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.
    • …
    corecore