411 research outputs found
Spectral properties of finite laser-driven lattices of ultracold Rydberg atoms
We investigate the spectral properties of a finite laser-driven lattice of
ultracold Rydberg atoms exploiting the dipole blockade effect in the frozen
Rydberg gas regime. Uniform one-dimensional lattices as well as lattices with
variable spacings are considered. In the case of a weak laser coupling, we find
a multitude of many-body Rydberg states with well-defined excitation properties
which are adiabatically accessible starting from the ground state. A
comprehensive analysis of the degeneracies of the spectrum as well as of the
single and pair excitations numbers of the eigenstates is performed. In the
strong laser regime, analytical solutions for the pseudo-fermionic eigenmodes
are derived. Perturbative energy corrections for this approximative approach
are provided.Comment: 17 pages, 12 figure
Recommended from our members
Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests
The Bolivian Chiquitano dry forest is the largest block of intact seasonally dry tropical forest in South America and is a priority ecoregion for conservation due to its high threat status. However, the long-term impacts of drier climatic conditions on tropical dry forests are not well understood, despite climate models predicting increased droughts over Bolivia in the coming century. In this paper, we assess the impacts of drier climatic conditions during the mid-Holocene on the Bolivian Chiquitano tropical dry forest using fossilised pollen, phytoliths, macro-charcoal, and geochemical proxies from a sediment core from a large lake (Laguna MandiorĂ©) on the BoliviaâBrazil border. Our results show that drier climatic conditions during the mid-
Holocene caused a local-scale, ecotonal expansion of upland savannah at the expense of dry forest. Interaction between drier climatic conditions and fire regime likely exerted a stronger control over the position of the dry forestâsavannah ecotone than edaphic factors. However, the majority of the dry forest within the lake catchment maintained a closed canopy throughout the drier conditions of the mid-Holocene, despite floristic turnover towards more drought-tolerant taxa. These findings imply overall resilience of the Chiquitano dry forest biome to future drought, albeit with floristic changes and upland savannah encroachment at ecotones
A Fresh Look at Axions and SN 1987A
We re-examine the very stringent limits on the axion mass based on the
strength and duration of the neutrino signal from SN 1987A, in the light of new
measurements of the axial-vector coupling strength of nucleons, possible
suppression of axion emission due to many-body effects, and additional emission
processes involving pions. The suppression of axion emission due to nucleon
spin fluctuations induced by many-body effects degrades previous limits by a
factor of about 2. Emission processes involving thermal pions can strengthen
the limits by a factor of 3-4 within a perturbative treatment that neglects
saturation of nucleon spin fluctuations. Inclusion of saturation effects,
however, tends to make the limits less dependent on pion abundances. The
resulting axion mass limit also depends on the precise couplings of the axion
and ranges from 0.5x10**(-3) eV to 6x10**(-3) eV.Comment: 32 latex pages, 13 postscript figures included, uses revtex.sty,
submitted to Physical Review
Recommended from our members
Effects of past climate variability on fire and vegetation in the cerrĂŁdo savanna of the Huanchaca Mesetta, NE Bolivia
CerrĂŁdo savannas have the greatest fire activity
of all major global land-cover types and play a significant
role in the global carbon cycle. During the 21st century,
temperatures are projected to increase by ⌠3
âŠC coupled
with a precipitation decrease of ⌠20 %. Although these conditions
could potentially intensify drought stress, it is unknown
how that might alter vegetation composition and fire
regimes. To assess how Neotropical savannas responded to
past climate changes, a 14 500-year, high-resolution, sedimentary
record from Huanchaca Mesetta, a palm swamp located
in the cerrĂŁdo savanna in northeastern Bolivia, was analyzed
with phytoliths, stable isotopes, and charcoal. A nonanalogue,
cold-adapted vegetation community dominated the
Lateglacialâearly Holocene period (14 500â9000 cal yr BP,
which included trees and C3 Pooideae and C4 Panicoideae
grasses. The Lateglacial vegetation was fire-sensitive and fire
activity during this period was low, likely responding to fuel
availability and limitation. Although similar vegetation characterized
the early Holocene, the warming conditions associated
with the onset of the Holocene led to an initial increase
in fire activity. Huanchaca Mesetta became increasingly firedependent
during the middle Holocene with the expansion
of C4 fire-adapted grasses. However, as warm, dry conditions,
characterized by increased length and severity of the
dry season, continued, fuel availability decreased. The establishment
of the modern palm swamp vegetation occurred at
5000 cal yr BP. Edaphic factors are the first-order control on
vegetation on the rocky quartzite mesetta. Where soils are
sufficiently thick, climate is the second-order control of vegetation
on the mesetta. The presence of the modern palm
swamp is attributed to two factors: (1) increased precipitation
that increased water table levels and (2) decreased frequency
and duration of surazos (cold wind incursions from
Patagonia) leading to increased temperature minima. Natural
(soil, climate, fire) drivers rather than anthropogenic
drivers control the vegetation and fire activity at Huanchaca
Mesetta. Thus the cerrĂŁdo savanna ecosystem of the Huanchaca
Plateau has exhibited ecosystem resilience to major
climatic changes in both temperature and precipitation since
the Lateglacial period
Instabilities in neutrino-plasma density waves
One examines the interaction and possible resonances between supernova
neutrinos and electron plasma waves. The neutrino phase space distribution and
its boundary regions are analyzed in detail. It is shown that the boundary
regions are too wide to produce non-linear resonant effects. The growth or
damping rates induced by neutrinos are always proportional to the neutrino flux
and .Comment: 9 pages, a few words modified to match PRD publicatio
Formation of Ultracold Heteronuclear Dimers in Electric Fields
The formation of ultracold molecules via stimulated emission followed by a
radiative deexcitation cascade in the presence of a static electric field is
investigated. By analyzing the corresponding cross sections, we demonstrate the
possibility to populate the lowest rotational excitations via photoassociation.
The modification of the radiative cascade due to the electric field leads to
narrow rotational state distributions in the vibrational ground state. External
fields might therefore represent an additional valuable tool towards the
ultimate goal of quantum state preparation of molecules
Recommended from our members
Environmental impact of geometric earthwork construction in pre-Columbian Amazonia
There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely âpristineâ and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate
labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began âŒ2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the
seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less laborâand potentially lower population densityâthan previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forestâsavanna biome shifts through the mid-to-late Holocene
Recommended from our members
Response of Amazonian forests to mid-Holocene drought: a model-data comparison
There is major concern for the fate of Amazonia over the coming century in the face of anthropogenic climate change. A key area of uncertainty is the scale of rainforest die-back to be expected under a future, drier climate. In this study, we use the middle Holocene (ca. 6,000 years before present) as an approximate analogue for a drier future, given that palaeoclimate data show much of Amazonia was significantly drier than present at this time. Here, we use an ensemble of climate and vegetation models to explore the sensitivity of Amazonian biomes to mid-Holocene climate change. For this we employ three dynamic vegetation models (JULES, IBIS, and SDGVM) forced by the bias-corrected mid-Holocene climate simulations from seven models that participated in the Paleoclimate Modelling Intercomparison Project 3 (PMIP3). These model outputs are compared with a multi-proxy palaeoecological dataset to gain a better understanding of where in Amazonia we have most confidence in the mid-Holocene vegetation simulations. A robust feature of all simulations and palaeodata is that the central Amazonian rainforest biome is unaffected by mid-Holocene drought. Greater divergence in mid-Holocene simulations exists in ecotonal eastern and southern Amazonia. Vegetation models driven with climate models that simulate a drier mid Holocene (100-150 mm per year decrease) better capture the observed (palaeodata) tropical forest die-back in these areas. Based on the relationship between simulated rainfall decrease and vegetation change, we find indications that in southern Amazonia the rate of tropical forest die-back was ~125,000 km2 per 100 mm rainfall decrease in the mid Holocene. This provides a baseline sensitivity of tropical forests to drought for this region (without human-driven changes to greenhouse gases, fire, and deforestation). We highlight the need for more palaeoecological and palaeoclimate data across lowland Amazonia to constrain model responses
- âŠ