148 research outputs found

    N-soliton solutions to the DKP equation and Weyl group actions

    Full text link
    We study soliton solutions to the DKP equation which is defined by the Hirota bilinear form, {\begin{array}{llll} (-4D_xD_t+D_x^4+3D_y^2) \tau_n\cdot\tau_n=24\tau_{n-1}\tau_{n+1}, (2D_t+D_x^3\mp 3D_xD_y) \tau_{n\pm 1}\cdot\tau_n=0 \end{array} \quad n=1,2,.... where τ0=1\tau_0=1. The τ\tau-functions τn\tau_n are given by the pfaffians of certain skew-symmetric matrix. We identify one-soliton solution as an element of the Weyl group of D-type, and discuss a general structure of the interaction patterns among the solitons. Soliton solutions are characterized by 4N×4N4N\times 4N skew-symmetric constant matrix which we call the BB-matrices. We then find that one can have MM-soliton solutions with MM being any number from NN to 2N−12N-1 for some of the 4N×4N4N\times 4N BB-matrices having only 2N2N nonzero entries in the upper triangular part (the number of solitons obtained from those BB-matrices was previously expected to be just NN).Comment: 22 pages, 12 figure

    Two-component Analogue of Two-dimensional Long Wave-Short Wave Resonance Interaction Equations: A Derivation and Solutions

    Full text link
    The two-component analogue of two-dimensional long wave-short wave resonance interaction equations is derived in a physical setting. Wronskian solutions of the integrable two-component analogue of two-dimensional long wave-short wave resonance interaction equations are presented.Comment: 16 pages, 9 figures, revised version; The pdf file including all figures: http://www.math.utpa.edu/kmaruno/yajima.pd

    Initial-boundary value problems for discrete evolution equations: discrete linear Schrodinger and integrable discrete nonlinear Schrodinger equations

    Full text link
    We present a method to solve initial-boundary value problems for linear and integrable nonlinear differential-difference evolution equations. The method is the discrete version of the one developed by A. S. Fokas to solve initial-boundary value problems for linear and integrable nonlinear partial differential equations via an extension of the inverse scattering transform. The method takes advantage of the Lax pair formulation for both linear and nonlinear equations, and is based on the simultaneous spectral analysis of both parts of the Lax pair. A key role is also played by the global algebraic relation that couples all known and unknown boundary values. Even though additional technical complications arise in discrete problems compared to continuum ones, we show that a similar approach can also solve initial-boundary value problems for linear and integrable nonlinear differential-difference equations. We demonstrate the method by solving initial-boundary value problems for the discrete analogue of both the linear and the nonlinear Schrodinger equations, comparing the solution to those of the corresponding continuum problems. In the linear case we also explicitly discuss Robin-type boundary conditions not solvable by Fourier series. In the nonlinear case we also identify the linearizable boundary conditions, we discuss the elimination of the unknown boundary datum, we obtain explicitly the linear and continuum limit of the solution, and we write down the soliton solutions.Comment: 41 pages, 3 figures, to appear in Inverse Problem

    Electric Charge Quantization

    Full text link
    Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1)U(1) factors -- such as the standard model and its variants -- is pedagogically reviewed and discussed in this article. This approach uses the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. We demonstrate that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton--numbers are anomaly-free. We also review the relevant experimental limits. Our approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton--number differences are explicitly broken. We briefly discuss some candidate extensions (e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5

    Search for Millicharged Particles at SLAC

    Get PDF
    Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such "millicharged" particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted to Physical Review Letter

    Solitary waves of nonlinear nonintegrable equations

    Full text link
    Our goal is to find closed form analytic expressions for the solitary waves of nonlinear nonintegrable partial differential equations. The suitable methods, which can only be nonperturbative, are classified in two classes. In the first class, which includes the well known so-called truncation methods, one \textit{a priori} assumes a given class of expressions (polynomials, etc) for the unknown solution; the involved work can easily be done by hand but all solutions outside the given class are surely missed. In the second class, instead of searching an expression for the solution, one builds an intermediate, equivalent information, namely the \textit{first order} autonomous ODE satisfied by the solitary wave; in principle, no solution can be missed, but the involved work requires computer algebra. We present the application to the cubic and quintic complex one-dimensional Ginzburg-Landau equations, and to the Kuramoto-Sivashinsky equation.Comment: 28 pages, chapter in book "Dissipative solitons", ed. Akhmediev, to appea

    Perturbation-induced radiation by the Ablowitz-Ladik soliton

    Full text link
    An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic perturbations.Comment: 13 pages, 4 figures, Phys. Rev. E (in press

    Stable multicolor periodic-wave arrays

    Full text link
    We study the existence and stability of cnoidal periodic wave arrays propagating in uniform quadratic nonlinear media and discover that they become completely stable above a threshold light intensity. To the best of our knowledge, this is the first example in physics of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons.Comment: 12 pages, 3 figure
    • …
    corecore