4 research outputs found

    Phylogeny of the Neotropical sages (Salvia subg. Calosphace; Lamiaceae) and insights into pollinator and area shifts

    No full text
    Salvia subg. Calosphace (Lamiaceae, Lamiales) is a highly diverse clade endemic to the New World. The phylogenetic relationships of Calosphace have been previously investigated using DNA sequences of nuclear ITS region and plastid psbA–trnH intergenic spacer, but the resulting trees lack resolution and support for many clades. The present paper reassesses the phylogenetic relationships of subgenus Calosphace, including a broader taxon sampling, with a special focus on representing previously unsampled sections, and using an additional plastid marker (trnL–trnF region). Our results show increased resolution and overall patterns of support, recovering ten main clades. Within core Calosphace, the most inclusive of these main clades, 17 new subclades were identified. Of the 42 sections for which more than one species was analysed, only 12 are monophyletic. Our biogeographical analysis identified at least twelve migrations to South America from Mexican and Central American lineages, in agreement with previous suggestions of multiple origins of South American Calosphace diversity. This analysis also confirmed a colonization of the Antilles by Andean lineages. The reconstruction of ancestral states of pollination syndromes showed multiple shifts to ornithophily from melittophily and one reversal to the latter.Fil: Fragoso-Martínez, Itzi. Universidad Nacional Autónoma de México; MéxicoFil: Martínez-Gordillo, Martha. Universidad Nacional Autónoma de México; MéxicoFil: Salazar, Gerardo A.. Universidad Nacional Autónoma de México; MéxicoFil: Sazatornil, Federico David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Jenks, Aaron A.. Berkeley University; Estados UnidosFil: García Peña, María del Rosario. Universidad Nacional Autónoma de México; MéxicoFil: Barrera-Aveleida, Giovanna. Universidad Nacional Autónoma de México; MéxicoFil: Benitez Vieyra, Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Magallón, Susana. Universidad Nacional Autónoma de México; MéxicoFil: Cornejo-Tenorio, Guadalupe. Universidad Nacional Autónoma de México; MéxicoFil: Granados Mendoza, Carolina. Universidad Nacional Autónoma de México; Méxic

    Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans

    No full text
    Generalist plant-pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar rewarding plant within the specialised pollen rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate, and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches, and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system
    corecore