1,002 research outputs found

    The rotating wave system-reservoir coupling: limitations and meaning in the non-Markovian regime

    Get PDF
    This paper deals with the dissipative dynamics of a quantum harmonic oscillator interacting with a bosonic reservoir. The Master Equations based on the Rotating Wave and on the Feynman-Vernon system--reservoir couplings are compared highlighting differences and analogies. We discuss quantitatively and qualitatively the conditions under which the counter rotating terms can be neglected. By comparing the analytic solution of the heating function relative to the two different coupling models we conclude that, even in the weak coupling limit, the counter rotating terms give rise to a significant contribution in the non--Markovian short time regime. The main result of this paper is that such a contribution is actually experimentally measurable and thus relevant for a correct description of the system dynamics.Comment: 14 pages, 3 figure

    Interaction of bimodal fields with few-level atoms in cavities and traps

    Get PDF
    The spectacular experimental results of the last few years in cavity quantum electrodynamics and trapped ions research has led to very high level laboratory performances. Such a stimulating situation essentially stems from two decisive advancements. The first is the invention of reliable protocols for the manipulation of single atoms. The second is the ability to produce desired bosonic environments on demand. These progresses have led to the possibility of controlling the form of the coupling between individual atoms and an arbitrary number of bosonic modes. As a consequence, fundamental matter-radiation interaction models like, for instance, the JC model and most of its numerous nonlinear multiphoton generalizations, have been realized or simulated in laboratory and their dynamical features have been tested more or less in detail. This topical paper reviews the state of the art of the theoretical investigations and of the experimental observations concerning the dynamical features of the coupling between single few-level atoms and two bosonic modes. In the course of the paper we show that such a configuration provides an excellent platform for investigating various quantum intermode correlation effects tested or testable in the cavity quantum electrodynamics and trapped ion experimental realms. In particular we discuss a mode-mode correlation effect appearing in the dynamics of a two-level atom quadratically coupled to two bosonic modes. This effect, named parity effect, consists in a high sensitivity to the evenness or oddness of the total number of bosonic excitations.Comment: Topical Review. To appear on J. Mod. Op

    Misbelief and misunderstandings on the non--Markovian dynamics of a damped harmonic oscillator

    Full text link
    We use the exact solution for the damped harmonic oscillator to discuss some relevant aspects of its open dynamics often mislead or misunderstood. We compare two different approximations both referred to as Rotating Wave Approximation. Using a specific example, we clarify some issues related to non--Markovian dynamics, non--Lindblad type dynamics, and positivity of the density matrix.Comment: 6 pages, 2 figures, added info: submitted to J. Opt. B: Quantum and Semiclass. Opt., Special Issue of the 10th Central European Workshop on Quantum Optics, reference added, discussion clarifie

    Quantum theory of heating of a single trapped ion

    Get PDF
    The heating of trapped ions due to the interaction with a {\it quantized environment} is studied {\it without performing the Born-Markov approximation}. A generalized master equation local in time is derived and a novel theoretical approach to solve it analytically is proposed. Our master equation is in the Lindblad form with time dependent coefficients, thus allowing the simulation of the dynamics by means of the Monte Carlo Wave Function (MCWF) method.Comment: 4 pages, 3 figure

    Continuous variable entanglement dynamics in structured reservoirs

    Get PDF
    We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.Comment: 12 pages, 8 figure

    Two-qubit non-Markovianity induced by a common environment

    Full text link
    We study non-Markovianity as backflow of information in two-qubit systems. We consider a setting where, by changing the distance between the qubits, one can interpolate between independent reservoir and common reservoir scenarios. We demonstrate that non-Markovianity can be induced by the common reservoir and single out the physical origin of this phenomenon. We show that two-qubit non-Markovianity coincides with instances of non-divisibility of the corresponding dynamical map, and we discuss the pair of states maximizing information flowback. We also discuss the issue of additivity for the measure we use and in doing so, give an indication of its usefulness as a resource for multipartite quantum systems.Comment: 9 pages, 5 figures, Published version with minor modification

    Dicke model and environment-induced entanglement in ion-cavity QED

    Get PDF
    We investigate realistic experimental conditions under which the collective Dicke model can be implemented in ion-cavity QED context. We show how ideal subradiance and superradiance can be observed and we propose an experiment to generate entanglement exploiting the existence of the subradiant state. We explore the conditions to achieve optimal entanglement generation and we show that they are reachable with current experimental technology.Comment: 17 pages, 11 figures. V2: published version, one reference added, typos correcte
    corecore