1,317 research outputs found

    Amplification of Angular Rotations Using Weak Measurements

    Get PDF
    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.Comment: 5 pages, 3 figures, contains supplementary informatio

    Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    Get PDF
    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding

    Hanbury Brown and Twiss Interferometry with Twisted Light

    Get PDF
    The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities inprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of light give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manisfested through distinct interference structures in the orbital angular momentum-mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics.Comment: Science Advance

    Measurement of the radial mode spectrum of photons through a phase-retrieval method

    Get PDF
    We propose and demonstrate a simple and easy-to-implement projective-measurement protocol to determine the radial index 'p' of a Laguerre-Gaussian (LGlp) mode. Our method entails converting any specified high-order LG0p mode into a near-Gaussian distribution that matches the fundamental mode of a single-mode fiber (SMF) through the use of two phase-screens (unitary transformations) obtained by applying a phase-retrieval algorithm. The unitary transformations preserve the orthogonality of modes and guarantee that our protocol can, in principle, be free of crosstalk. We measure the coupling efficiency of the transformed radial modes to the SMF for different pairs of phase-screens. Because of the universality of phase-retrieval methods, we believe that our protocol provides an efficient way of fully characterizing the radial spatial profile of an optical field

    Structure of 10N in 9C+p resonance scattering

    Full text link
    The structure of exotic nucleus 10N was studied using 9C+p resonance scattering. Two L=0 resonances were found to be the lowest states in 10N. The ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2- or 1- spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.

    Interferometry with Photon-Subtracted Thermal Light

    Get PDF
    We propose and implement a quantum procedure for enhancing the sensitivity with which one can determine the phase shift experienced by a weak light beam possessing thermal statistics in passing through an interferometer. Our procedure entails subtracting exactly one (which can be generalized to m) photons from the light field exiting an interferometer containing a phase-shifting element in one of its arms. As a consequence of the process of photon subtraction, and somewhat surprisingly, the mean photon number and signal-to-noise ratio of the resulting light field are thereby increased, leading to enhanced interferometry. This method can be used to increase measurement sensitivity in a variety of practical applications, including that of forming the image of an object illuminated only by weak thermal light
    corecore