142 research outputs found

    Jahn-Teller effect and Electron correlation in manganites

    Full text link
    Jahn-Teller (JT) effect both in the absence and presence of the strong Coulomb correlation is studied theoretically focusing on the reduction ΔK\Delta K of the kinetic energy gain which is directly related to the spin wave stiffness. Without the Coulomb interaction, the perturbative analysis gives ΔK/(g2/MΩ2)0.050.13\Delta K / (g^2/M\Omega^2) \cong 0.05-0.13 depending on the electron number [gg: electron-phonon(el-ph) coupling constant, MM: mass of the oxygen atom, Ω\Omega: frequency of the phonon]. Although there occurs many channels of the JT el-ph interaction in the multiband system, the final results of ΔK\Delta K roughly scales with the density of states at the Fermi energy. In the limit of strong electron correlation, the magnitude of the orbital polarization saturate and the relevant degrees of freedom are the direction (phase) of it. An effective action is derived for the phase variable including the effect of the JT interaction. In this limit, JT interaction is {\it{enhanced}} compared with the non-interacting case, and ΔK\Delta K is given by the lattice relaxation energy ELE_{L} for the localized electrons, although the electrons remains itinerant. Discussion on experiments are given based on these theoretical results.Comment: 24 pages, 7 figure

    Microwave properties of Nd_0.5Sr_0.5MnO_3: a key role of the (x^2-y^2)-orbital effects

    Full text link
    Transmittance of the colossal magnetoresistive compound Nd_0.5Sr_0.5MnO_3 showing metal-insulator phase transition has been studied by means of the submm- and mm-wavelength band spectroscopy. An unusually high transparency of the material provided direct evidence for the significant suppression of the coherent Drude weight in the ferromagnetic metallic state. Melting of the A-type antiferromagnetic states has been found to be responsible for a considerable increase in the microwave transmission, which was observed at the transition from the insulating to the metallic phase induced by magnetic field or temperature. This investigation confirmed a dominant role of the (x^2-y^2)-orbital degree of freedom in the low-energy optical properties of Nd_0.5Sr_0.5MnO_3 and other doped manganites with planar (x^2-y^2)-orbital order, as predicted theoretically. The results are discussed in terms of the orbital-liquid concept.Comment: 8 pages, 3 figure

    Magnetic and orbital order in overdoped bilayer manganites

    Full text link
    The magnetic and orbital orders for the bilayer manganites in the doping region 0.5<x<1.00.5 < x <1.0 have been investigated from a model that incorporates the two ege_g orbitals at each Mn site, the inter-orbital Coulomb interaction and lattice distortions. The usual double exchange operates via the ege_g orbitals. It is shown that such a model reproduces much of the phase diagram recently obtained for the bilayer systems in this range of doping. The C-type phase with (π,0,π\pi,0,\pi) spin order seen by Ling et al. appears as a natural consequence of the layered geometry and is stabilised by the static distortions of the system. The orbital order is shown to drive the magnetic order while the anisotropic hopping across the ege_g orbitals, layered nature of the underlying structure and associated static distortions largely determine the orbital arrangements.Comment: 8 pages, 5 figure

    Complex orbital state in manganites

    Full text link
    The ege_g-orbital states with complex coefficients of the linear combination of x2y2x^2-y^2 and 3z2r23z^2-r^2 are studied for the ferromagnetic state in doped manganites. Especially the focus is put on the competition among uniform complex, staggered complex, and real orbital states. As the hole-doping xx increases, the real, the canted complex, and the staggered complex orbital states appears successively. Uniform complex state analoguous to Nagaoka ferromagnet does not appear. These complex states can be expressed as a resonating state among the planer orbitals as the orbital liquid, accompanied by no Jahn-Teller distortion.Comment: 14 pages, 6 figure

    Charge order and phase segregation in overdoped bilayer manganites

    Full text link
    There have been recent reports of charge ordering around x=0.5x=0.5 in the bilayer manganites. At x=0.5x=0.5, there appears to be a coexistence region of layered A-type antiferromagnetc and charge order. There are also reports of orbital order in this region without any Jahn-Teller effect. Based on physical grounds, this region is investigated from a model that incorporates the two ege_g orbitals at each Mn site and a near-neighbour Coulomb repulsion. It is shown that there indeed is both charge and orbital order close to the half-doped region coincident with a layered magnetic structure. Although the orbital order is known to drive the magnetic order, the layered magnetic structure is also favoured in this system by the lack of coherent transport across the planes and the reduced dimensionality of the lattice. The anisotropic hopping across the ege_g orbitals and the underlying layered structure largely determine the orbital arrangements in this region, while the charge order is primarily due to the long range interactions.Comment: 6 pages, 6 figure

    Orbital polarons versus itinerant e_g electrons in doped manganites

    Full text link
    We study an effective one-dimensional (1D) orbital t-J model derived for strongly correlated e_g electrons in doped manganites. The ferromagnetic spin order at half filling is supported by orbital superexchange prop. to J which stabilizes orbital order with alternating x^2-y^2 and 3z^2-r^2 orbitals. In a doped system it competes with the kinetic energy prop. to t. When a single hole is doped to a half-filled chain, its motion is hindered and a localized orbital polaron is formed. An increasing doping generates either separated polarons or phase separation into hole-rich and hole-poor regions, and eventually polarizes the orbitals and gives a it metallic phase with occupied 3z^2-r^2 orbitals. This crossover, investigated by exact diagonalization at zero temperature, is demonstrated both by the behavior of correlation functions and by spectral properties, showing that the orbital chain with Ising superexchange is more classical and thus radically different from the 1D spin t-J model. At finite temperature we derive and investigate an effective 1D orbital model using a combination of exact diagonalization with classical Monte-Carlo for spin correlations. A competition between the antiferromagnetic and ferromagnetic spin order was established at half filling, and localized polarons were found for antiferromagnetic interactions at low hole doping. Finally, we clarify that the Jahn-Teller alternating potential stabilizes the orbital order with staggered orbitals, inducing the ferromagnetic spin order and enhancing the localized features in the excitation spectra. Implications of these findings for colossal magnetoresistance manganites are discussed.Comment: 19 pages, 20 figure

    Spin and orbital ordering in double-layered manganites

    Full text link
    We study theoretically the phase diagram of the double-layered perovskite manganites taking into account the orbital degeneracy, the strong Coulombic repulsion, and the coupling with the lattice deformation. Observed spin structural changes as the increased doping are explained in terms of the orbital ordering and the bond-length dependence of the hopping integral along cc-axis. Temperature dependence of the neutron diffraction peak corresponding to the canting structure is also explained. Comparison with the 3D cubic system is made.Comment: 7 figure

    Magnetic Phases of Electron-Doped Manganites

    Full text link
    We study the anisotropic magnetic structures exhibited by electron-doped manganites using a model which incorporates the double-exchange between orbital ly degenerate ege_{g} electrons and the super-exchange between t2gt_{2g} electrons with realistic values of the Hund's coupling(JHJ_H), the super-exchange coupling(JAFJ_{AF}), and the bandwidth(WW). We look at the relative stabilities of the G, C and A type antiferromagnetic ph ases. In particular we find that the G-phase is stable for low electron doping as seen in experiments. We find good agreement with the experimentally observed magnetic phase diagrams of electron-doped manganites (x>0.5x > 0.5) such as Nd1x_{1-x}Srx_{x}MnO3_{3}, Pr1x_{1-x}Srx_{x}MnO3_{3}, and Sm1x_{1-x}Cax_{x}MnO3_{3}. We can also explain the experimentally observed orbital structures of the C a nd A phases. We also extend our calculation for electron-doped bilayer manganites of the form R22x_{2-2x}A1+2x_{1+2x}Mn2_2O7_7 and predict that the C-phase will be absent in t hese systems due to their reduced dimensionality.Comment: 7 .ps files included. To appear in Phys. Rev. B (Feb 2001

    Phase diagram of a generalized Hubbard model applied to orbital order in manganites

    Full text link
    The magnetic phase diagram of a two-dimensional generalized Hubbard model proposed for manganites is studied within Hartree-Fock approximation. In this model the hopping matrix includes anisotropic diagonal hopping matrix elements as well as off-diagonal elements. The antiferromagnetic (AF), ferromagnetic (F), canted (C) and paramagnetic (P) states are included in the analysis as possible phases. It is found that away from half-filling only the canted and F states may exist and AF and P states which are possible for the usual Hubbard model do not appear. This is because the F order has already developed for on-site repulsion U=0 due to the hopping matrix of the generalized model. When applied for manganites the orbital degree is described by a pseudospin. Thus our ``magnetic'' phase diagram obtained physically describes how orbital order changes with UU and with doping for manganites. Part of our results are consistent with other numerical calculations and some experiments.Comment: 5 eps figures; a note added, to appear in Phys. Rev.
    corecore