4,494 research outputs found

    Ferromagnetism Induced by Uniaxial Pressure in the Itinerant Metamagnet Sr3Ru2O7

    Get PDF
    We report a uniaxial-pressure study on the magnetisation of single crystals of the bilayer perovskite Sr3Ru2O7, a metamagnet close to a ferromagnetic instability. We observed that the application of a uniaxial pressure parallel to the c-axis induces ferromagnetic ordering with a Curie temperature of about 80 K and critical pressures of about 4 kbar or higher. This value for the critical pressure is even higher than the value previously reported (~ 1 kbar), which might be attributed to the difference of the impurity level. Below the critical pressure parallel to the c-axis, the metamagnetic field appears to hardly change. We have also found that uniaxial pressures perpendicular to the c-axis, in contrast, do not induce ferromagnetism, but shift the metamagnetic field to higher fields.Comment: Accepted for publication in Proc of 24th Int. Conf. on Low Temperature Physics (LT24); 2 page

    Symmetry-breaking lattice distortion in Sr_3Ru_2O_7

    Get PDF
    The electronic nematic phase of Sr3_3Ru2_2O7_7 is investigated by high-resolution in-plane thermal expansion measurements in magnetic fields close to 8 T applied at various angles Θ\Theta off the c-axis. At Θ<10\Theta<10^\circ we observe a very small (10710^{-7}) lattice distortion which breaks the four-fold in-plane symmetry, resulting in nematic domains with interchanged aa- and b-axis. At Θ10\Theta \gtrsim 10^\circ the domains are almost fully aligned and thermal expansion indicates an area-preserving lattice distortion of order 2×1062\times 10^{-6} which is likely related to orbital ordering. Since the system is located in the immediate vicinity to a metamagnetic quantum critical end point, the results represent the first observation of a structural relaxation driven by quantum criticality.Comment: 4 pages, 5 figures, PRL accepte

    Electronic nematicity and its relation to quantum criticality in Sr_3Ru_2O_7 studied by thermal expansion

    Get PDF
    We report high-resolution measurements of the in-plane thermal expansion anisotropy in the vicinity of the electronic nematic phase in Sr3_3Ru2_2O7_7 down to very low temperatures and in varying magnetic field orientation. For fields applied along the c-direction, a clear second-order phase transition is found at the nematic phase, with critical behavior compatible with the two-dimensional Ising universality class (although this is not fully conclusive). Measurements in a slightly tilted magnetic field reveal a broken four-fold in-plane rotational symmetry, not only within the nematic phase, but extending towards slightly larger fields. We also analyze the universal scaling behavior expected for a metamagnetic quantum critical point, which is realized outside the nematic region. The contours of the magnetostriction suggest a relation between quantum criticality and the nematic phase.Comment: 8 pages, 12 Figures, invited paper at QCNP 2012 conferenc

    Anisotropy of the low-temperature magnetostriction of Sr3Ru2O7

    Get PDF
    We use high-resolution capacitive dilatometry to study the low-temperature linear magnetostriction of the bilayer ruthenate Sr3_3Ru2_2O7_7 as a function of magnetic field applied perpendicular to the ruthenium-oxide planes (BcB\parallel c). The relative length change ΔL(B)/L\Delta L(B)/L is detected either parallel or perpendicular to the c-axis close to the metamagnetic region near B=8 T. In both cases, clear peaks in the coefficient λ(B)=d(ΔL/L)/dB\lambda(B)=d(\Delta L/L)/dB at three subsequent metamagnetic transitions are observed. For ΔLc\Delta L\perp c, the third transition at 8.1 T bifurcates at temperatures below 0.5 K. This is ascribed to the effect of an in-plane uniaxial pressure of about 15 bar, unavoidable in the dilatometer, which breaks the original fourfold in-plane symmetry.Comment: 3 pages, 3 Figures, Manuscript for Proceedings of the International Conference on Quantum Criticality and Novel Phases (QCNP09, Dresden

    Orbital-selective Mass Enhancements in Multi-band Ca2x_{2-x}Srx_{x}RuO4_{4} Systems Analyzed by the Extended Drude Model

    Full text link
    We investigated optical spectra of quasi-two-dimensional multi-band Ca2x% _{2-x} Srx_{x}RuO4_{4} systems. The extended Drude model analysis on the ab-plane optical conductivity spectra indicates that the effective mass should be enhanced near x=0.5x=0.5. Based on the sum rule argument, we showed that the orbital-selective Mott-gap opening for the dyz/zxd_{yz/zx} bands, the widely investigated picture, could not be the origin of the mass enhancement. We exploited the multi-band effects in the extended Drude model analysis, and demonstrated that the intriguing heavy mass state near x=0.5x=0.5 should come from the renormalization of the dxyd_{xy} band.Comment: 4 figure

    Mechanism of hopping transport in disordered Mott insulators

    Full text link
    By using a combination of detailed experimental studies and simple theoretical arguments, we identify a novel mechanism characterizing the hopping transport in the Mott insulating phase of Ca2x_{2-x}Srx_xRuO4_4 near the metal-insulator transition. The hopping exponent α\alpha shows a systematic evolution from a value of α=1/2\alpha=1/2 deeper in the insulator to the conventional Mott value α=1/3\alpha=1/3 closer to the transition. This behavior, which we argue to be a universal feature of disordered Mott systems close to the metal-insulator transition, is shown to reflect the gradual emergence of disorder-induced localized electronic states populating the Mott-Hubbard gap.Comment: 5 pages, 3 figures, To be published in Physical Review Letter

    Detailed Topography of the Fermi Surface of Sr2RuO4

    Full text link
    We apply a novel analysis of the field and angle dependence of the quantum-oscillatory amplitudes in the unconventional superconductor Sr2RuO4 to map its Fermi surface in unprecedented detail, and to obtain previously inaccessible information on the band dispersion. The three quasi-2D Fermi surface sheets not only exhibit very diverse magnitudes of warping, but also entirely different dominant warping symmetries. We use the data to reassess recent results on c-axis transport phenomena.Comment: REVTeX, 4 page

    Pressure-Tuned Collapse of the Mott-Like State in Ca_{n+1}Ru_nO_{3n+1} (n=1,2): Raman Spectroscopic Studies

    Full text link
    We report a Raman scattering study of the pressure-induced collapse of the Mott-like phases of Ca_3Ru_2O_7 (T_N=56 K) and Ca_2RuO_4 (T_N=110 K). The pressure-dependence of the phonon and two-magnon excitations in these materials indicate: (i) a pressure-induced collapse of the antiferromagnetic (AF) insulating phase above P* ~ 55 kbar in Ca_3Ru_2O_7 and P* ~ 5-10 kbar in Ca_2RuO_4, reflecting the importance of Ru-O octahedral distortions in stabilizing the AF insulating phase; and (ii) evidence for persistent AF correlations above the critical pressure of Ca_2RuO_4, suggestive of phase separation involving AF insulator and ferromagnetic metal phases.Comment: 3 figure

    Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure

    Get PDF
    We present measurements on ultra clean single crystals of the bilayered ruthenate metal Sr3Ru2O7, which has a magnetic-field-tuned quantum critical point. Quantum oscillations of differing frequencies can be seen in the resistivity both below and above its metamagnetic transition. This frequency shift corresponds to a small change in the Fermi surface volume that is qualitatively consistent with the small moment change in the magnetisation across the metamagnetic transition. Very near the metamagnetic field, unusual behaviour is seen. There is a strong enhancement of the resistivity in a narrow field window, with a minimum in the resistivity as a function of temperature below 1 K that becomes more pronounced as the disorder level decreases. The region of anomalous behaviour is bounded at low temperatures by two first-order phase transitions. The implications of the results are discussed. PACS: 68.35.Rh, 71.27.+a, 72.15.-v, 74.70.PqComment: 12 pages 4 figures, submitte

    Cyclotron Resonance in the Layered Perovskite Superconductor Sr2RuO4

    Full text link
    We have measured the cyclotron masses in Sr2RuO4 through the observation of periodic-orbit-resonances - a magnetic resonance technique closely related to cyclotron resonance. We obtain values for the alpha, beta and gamma Fermi surfaces of (4.33+/-0.05)me, (5.81+/-0.03)me and (9.71+/-0.11)me respectively. The appreciable differences between these results and those obtained from de Haas- van Alphen measurements are attributable to strong electron-electron interactions in this system. Our findings appear to be consistent with predictions for a strongly interacting Fermi liquid; indeed, semi-quantitative agreement is obtained for the electron pockets beta and gamma.Comment: 4 pages + 3 figure
    corecore