10 research outputs found

    Santiago Ramón y Cajal, the ultimate scientist?

    No full text
    The Nobel Prize in Physiology or Medicine for 1906 was shared by two scientists that set the basis for understanding how the brain works: Camillo Golgi and Santiago Ramón y Cajal were awarded the honour "in recognition of their work on the structure of the nervous system". Yet, contrary to what usually happens in these situations, one of them was wrong and tried to sabotage the theories of the other one, refusing to admit his mistakes even when he gave his acceptance speech. How did Santiago Ramón y Cajal, a humble Spanish doctor, manage to upstage the legendary Italian pathologist and change forever the way we see the brain?

    BTK modulates p73 activity to induce apoptosis independently of p53.

    No full text
    Bruton's tyrosine kinase (BTK) is a key component of B cell receptor signalling. Because of this, BTK plays an important role in cell proliferation and survival in various B cell malignancies. However, in certain contexts, BTK can also have tumour suppressor functions. We have previously shown that BTK activates the p53 transcriptional activity by binding to and phosphorylating p53, as well as acting on MDM2 to reduce its inhibitory effects. This results in increased p53 functions, including enhanced cell death. Here, we report that BTK can also induce cell death and increase responses to DNA damage independently of p53. This is concomitant to the induction of p21, PUMA and MDM2, which are classic target genes of the p53 family of proteins. Our results show that these p53-independent effects of BTK are mediated through p73. Similar to what we observed in the p53 pathway, BTK can upregulate p73 after DNA damage and induce expression of its target genes, suggesting that BTK is a modulator of p73 functions and in the absence of p53. This effect allows BTK to have pro-apoptotic functions independently of its effects on the p53 pathway and thus play an important role in the DNA damage-related induction of apoptosis in the absence of p53. This provides a novel role of BTK in tumour suppression and contributes to the understanding of its complex pleiotropic functions

    Relevance of the bruton tyrosine kinase as a target for COVID-19 therapy

    Full text link
    The outbreak of the novel coronavirus disease 2019 (COVID-19) has emerged as one of the biggest global health threats worldwide. As of October 2020, more than 44 million confirmed cases and more than 1,160,000 deaths have been reported globally, and the toll is likely to be much higher before the pandemic is over. There are currently little therapeutic options available and new potential targets are intensively investigated. Recently, Bruton tyrosine kinase (BTK) has emerged as an interesting candidate. Elevated levels of BTK activity have been reported in blood monocytes from patients with severe COVID-19, compared with those from healthy volunteers. Importantly, various studies confirmed empirically that administration of BTK inhibitors (acalabrutinib and ibrutinib) decreased the duration of mechanical ventilation and mortality rate for hospitalized patients with severe COVID-19. Herein, we review the current information regarding the role of BTK in severe acute respiratory syndrome coronavirus 2 infections and the suitability of its inhibitors as drugs to treat COVID-19. The use of BTK inhibitors in the management of COVID-19 shows promise in reducing the severity of the immune response to the infection and thus mortality. However, BTK inhibition may be contributing in other ways to inhibit the effects of the virus and this will need to be carefully studied

    Characterization of the HDAC/PI3K inhibitor CUDC-907 as a novel senolytic

    No full text
    The accumulation of senescent cells has an important role in the phenotypical changes observed in ageing and in many age-related pathologies. Thus, the strategies designed to prevent these effects, collectively known as senotherapies, have a strong clinical potential. Senolytics are a type of senotherapy aimed at specifically eliminating senescent cells from tissues. Several small molecule compounds with senolytic properties have already been identified, but their specificity and range of action are variable. Because of this, potential novel senolytics are being actively investigated. Given the involvement of HDACs and the PI3K pathway in senescence, we hypothesized that the dual inhibitor CUDC-907, a drug already in clinical trials for its antineoplastic effects, could have senolytic effects. Here, we show that CUDC-907 was indeed able to selectively induce apoptosis in cells driven to senesce by p53 expression, but not when senescence happened in the absence of p53. Consistent with this, CUDC-907 showed senolytic properties in different models of stress-induced senescence. Our results also indicate that the senolytic functions of CUDC-907 depend on the inhibitory effects of both HDACs and PI3K, which leads to an increase in p53 and a reduction in BH3 pro-survival proteins. Taken together, our results show that CUDC-907 has the potential to be a clinically relevant senolytic in pathological conditions in which stress-induced senescence is involved.</p

    Interferon gamma regulates a complex pro-survival signal network in chronic lymphocytic leukemia

    Full text link
    Background: It is known that the microenvironmental cytokine interferon gamma (IFN-γ) provides a survival advantage for chronic lymphocytic leukemia (CLL) cells. However, the mechanisms involved in this effect have not been properly investigated. Methods: Herein, we conducted a comprehensive screening of the effects of IFN-γ on signaling pathways and gene expression profiles in CLL cells by using western blotting, real-time quantitative reverse transcription (RT-qPCR) and high-throughput RNA sequencing (RNA-seq). Results: We found that IFN-γ not only activated the pro-survival signal transducer and activator of transcription 3 (STAT3), but also activated the protein kinase B and extracellular signal-regulated kinase signaling pathways. RNA-seq analysis showed that IFN-γ stimulation changed the expression profiles of more than 500 genes, with 391 being up-regulated and 123 down-regulated. These genes are involved in numerous biological processes, including anti-apoptosis, cell migration, and proliferation. IFN-γ significantly up-regulated the expression of CD38, BCL6, CXCL9, BCL2A1, SCOS3, IL-10, HGF, EGFR, THBS-1, FN1, and MUC1, which encode proteins potentially associated with disease progression, worse prognosis or poor response to treatment. Blocking janus kinases1/2 (JAK1/2) or STAT3 signal by specific inhibitors affected the expression of most genes, suggesting a pivotal role of the JAK1/2-STAT3 pathway in IFN-γ pro-survival effects in CLL. Conclusions: Our data demonstrate that IFN-γ regulates a complex pro-survival signal network in CLL through JAK1/2-STAT3, which provides a rational explanation for IFN-γ promoting CLL cells survival and drug resistance.</p

    Differences in the molecular profile of endometrial cancers from British White and British South Asian women

    No full text
    OBJECTIVES: To identify differences in the mutational profile of endometrial tumours between British White (BW) and South Asian (BSA) women. METHODS: We analysed primary tumours from matched cohorts of British White (BW) and British South Asian (BSA) women resident in Leicestershire diagnosed with EC. Next Generation Sequencing was performed to investigate mutational differences in a panel of 10 genes previously identified as being commonly mutated in EC. The presence of somatic Mismatch Repair (MMR) gene deficiencies was determined by immunohistochemistry. RESULTS: In total, 57 tumours (27 BSA and 30 BW) were sequenced. There was no significant difference in the overall mutation frequency of the 10 genes analysed; however, numerous differences were observed between the groups. There was a positive association between PIK3CA and PTEN mutations in the BSA group, with 78% of PIK3CA-mutant tumours harbouring a PTEN mutation, whereas only 11% of PIK3CA wild-type (wt) tumours were PTEN mutant positive (p = 0.0012). In BW women, 90% of ARID1A mutant tumours had co-existent PI3K pathway mutations versus 50% of wild-type (wt) ARID1A patients (p = 0.0485). This trend was not significant in the BSA group (p = 0.66). The age at diagnosis was significantly higher in the BW group with a somatic MMR gene deficiency compared to those with no deficiency (72.8 years versus 59.6 years, p = 0.007), whereas this difference was not seen in the BSA group (64 years versus 60 years, p = 0.37). CONCLUSION: We have identified differences in the mutational profile of primary EC tumours from BW and BSA women. Further research is needed to confirm these findings and to explore their potential implications for early detection, treatment response and prognosis.</div

    CUDC-907 blocks multiple pro-survival signals and abrogates microenvironment protection in CLL.

    No full text
    CUDC-907, a dual PI3K/HDAC inhibitor, has been proposed to have therapeutic potential in hematopoietic malignancies. However, the molecular mechanisms of its effects in chronic lymphocytic leukaemia (CLL) remain elusive. We show that CLL cells are sensitive to CUDC-907, even under conditions similar to the protective microenvironment of proliferation centres. CUDC-907 inhibited PI3K/AKT and HDAC activity, as expected, but also suppressed RAF/MEK/ERK and STAT3 signalling and reduced the expression of anti-apoptotic BCL-2 family proteins BCL-2, BCL-xL, and MCL-1. Moreover, CUDC-907 downregulated cytokines BAFF and APRIL and their receptors BAFFR, TACI, and BCMA, thus blocking BAFF-induced NF-κB signalling. T cell chemokines CCL3/4/17/22 and phosphorylation of CXCR4 were also reduced by CUDC-907. These data indicated that CUDC-907 abrogates different protective signals and suggested that it might sensitize CLL cells to other drugs. Indeed, combinations of low concentrations of CUDC-907 with inhibitors of BCL2, BTK, or the NF-κB pathway showed a potent synergistic effect. Our data indicate that, apart from its known functions, CUDC-907 blocks multiple pro-survival pathways to overcome microenvironment protection in CLL cells. This provides a rationale to evaluate the clinical relevance of CUDC-907 in combination therapies with other targeted inhibitors

    Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition

    Get PDF
    One of the hallmarks of aging is the progressive accumulation of senescent cells in organisms, which has been proposed to be a contributing factor to age-dependent organ dysfunction. We recently reported that Bruton's tyrosine kinase (BTK) is an upstream component of the p53 responses to DNA damage. BTK binds to and phosphorylates p53 and MDM2, which results in increased p53 activity. Consistent with this, blocking BTK impairs p53-induced senescence. This suggests that sustained BTK inhibition could have an effect on organismal aging by reducing the presence of senescent cells in tissues. Here, we show that ibrutinib, a clinically approved covalent inhibitor of BTK, prolonged the maximum lifespan of a Zmpste24−/− progeroid mice, which also showed a reduction in general age-related fitness loss. Importantly, we found that certain brain functions were preserved, as seen by reduced anxiety-like behaviour and better long-term spatial memory. This was concomitant to a decrease in the expression of specific markers of senescence in the brain, which confirms a lower accumulation of senescent cells after BTK inhibition. Our data show that blocking BTK has a modest increase in lifespan in Zmpste24−/− mice and protects them from a decline in brain performance. This suggests that specific inhibitors could be used in humans to treat progeroid syndromes and prevent the age-related degeneration of organs such as the brain

    Detecting and targeting senescent cells using molecularly imprinted nanoparticles

    Full text link
    The progressive accumulation of senescent cells in tissues in response to damage importantly contributes to pathophysiological conditions such as fibrosis, diabetes, cancer, Alzheimer's and ageing. Consistent with this, eliminating senescent cells prolongs the lifespan and healthspan in animals and ameliorates certain diseases. Detecting and clearing senescent cells from human tissues could therefore have a significant diagnostic and prognostic impact. However, identifying senescent cells in vivo has proven to be complex. To address this, we characterized and validated a panel of novel membrane markers of senescence. Here, we show the application of molecularly imprinted nanoparticles (nanoMIPs) against an extracellular epitope of one of these markers, B2M, to detect senescent cells in vitro and in vivo. We show that nanoMIPs do not elicit toxic responses in the cells or in mice and successfully recognize old animals, which have a higher proportion of senescent cells in their organs. Importantly, nanoMIPs loaded with drugs can specifically kill senescent cells. Our results provide a proof-of-principle assessment of specific and safe nanotechnology-based approaches for senescent cell detection and clearance with potential clinical relevance

    Long-term follow-up of patients with CLL treated with the selective Bruton's tyrosine kinase inhibitor ONO/GS-4059.

    Full text link
    [First paragraph] The inhibitor of Bruton’s tyrosine kinase (BTK) ibrutinib has transformed the treatment of chronic lymphocytic leukemia (CLL); many patients with previously untreatable disease may now enter durable remissions.1,2 Nevertheless, the kinome of ibrutinib is broad, resulting in toxicities including bleeding, arthralgia, diarrhea, hypertension, and atrial fibrillation.3-6 Up to 20% of patients discontinue ibrutinib due to toxicity.7-9 More selective BTK inhibitors (BTKis) include ONO/GS-4059, acalabrutinib, and BGB-3111. Preliminary data indicate that these drugs have comparable activity to ibrutinib, but with reduced toxicities.10-12 However, long-term follow-up and response data have not yet been reported. We provide an updated, 3-year follow-up of treatment efficacy, safety, and laboratory correlates, including baseline mutational profiling of CLL patients in the phase 1 ONO/GS-4059 extension study
    corecore