10 research outputs found

    A modified mark test for own-body recognition in pig-tailed macaques (Macaca nemestrina)

    Get PDF
    Classic mirror self-recognition mark tests involve familiarizing the subject with its mirror image, surreptitiously applying a mark on the subject’s eyebrow, nose, or ear, and measuring self-directed behaviors towards the mark. For many non-human primate species, however, direct gaze at the face constitutes an aggressive and threatening signal. It is therefore possible that monkeys fail the mark test because they do not closely inspect their faces in a mirror and hence they have no expectations about their physical appearance. In the current study we prevented 2 pig-tailed macaques (Macaca nemestrina) from seeing their own faces in a mirror and we adopted a modified version of the classic mark test in which monkeys were marked on the chest, a body region to which they normally have direct visual access but that in the current study was visible only via a mirror. Neither monkey tried to touch the mark on its chest, possibly due to a failure to understand the mirror as a reflective surface. To further the monkeys’ understanding of the mirror image, we trained them to reach for food using the mirror as the only source of information. After both monkeys had learned mirror-mediated reaching, we replicated the mark test. In this latter phase of the study, only 1 monkey scratched the red dye on the chest once. The results are consistent with other findings suggesting that monkeys are not capable of passing a mark test, and imply that face and body recognition rely on the same cognitive abilities

    Assessing learning and memory in pigs

    Get PDF
    In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition

    Individual and social learning processes involved in the acquisition and generalization of tool use in macaques.

    No full text
    Macaques can efficiently use several tools, but their capacity to discriminate the relevant physical features of a tool and the social factors contributing to their acquisition are still poorly explored. In a series of studies, we investigated macaques' ability to generalize the use of a stick as a tool to new objects having different physical features (study 1), or to new contexts, requiring them to adapt the previously learned motor strategy (study 2). We then assessed whether the observation of a skilled model might facilitate tool-use learning by naive observer monkeys (study 3). Results of study 1 and study 2 showed that monkeys trained to use a tool generalize this ability to tools of different shape and length, and learn to adapt their motor strategy to a new task. Study 3 demonstrated that observing a skilled model increases the observers' manipulations of a stick, thus facilitating the individual discovery of the relevant properties of this object as a tool. These findings support the view that in macaques, the motor system can be modified through tool use and that it has a limited capacity to adjust the learnt motor skills to a new context. Social factors, although important to facilitate the interaction with tools, are not crucial for tool-use learning

    Reducing the neural search space for hominid cognition: What distinguishes human and great ape brains from those of small apes?

    No full text
    corecore