26 research outputs found

    CEDR: Contextualized Embeddings for Document Ranking

    No full text
    Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language modes (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models

    PARADE: Passage Representation Aggregation for Document Reranking

    Get PDF
    We present PARADE, an end-to-end Transformer-based model that considers document-level context for document reranking. PARADE leverages passage-level relevance representations to predict a document relevance score, overcoming the limitations of previous approaches that perform inference on passages independently. Experiments on two ad-hoc retrieval benchmarks demonstrate PARADE's effectiveness over such methods. We conduct extensive analyses on PARADE's efficiency, highlighting several strategies for improving it. When combined with knowledge distillation, a PARADE model with 72\% fewer parameters achieves effectiveness competitive with previous approaches using BERT-Base. Our code is available at \url{https://github.com/canjiali/PARADE}

    PARADE: Passage Representation Aggregation for Document Reranking

    Get PDF
    We present PARADE, an end-to-end Transformer-based model that considers document-level context for document reranking. PARADE leverages passage-level relevance representations to predict a document relevance score, overcoming the limitations of previous approaches that perform inference on passages independently. Experiments on two ad-hoc retrieval benchmarks demonstrate PARADE's effectiveness over such methods. We conduct extensive analyses on PARADE's efficiency, highlighting several strategies for improving it. When combined with knowledge distillation, a PARADE model with 72\% fewer parameters achieves effectiveness competitive with previous approaches using BERT-Base. Our code is available at \url{https://github.com/canjiali/PARADE}

    Expansion via Prediction of Importance with Contextualization

    Get PDF
    The identification of relevance with little textual context is a primary challenge in passage retrieval. We address this problem with a representation-based ranking approach that: (1) explicitly models the importance of each term using a contextualized language model; (2) performs passage expansion by propagating the importance to similar terms; and (3) grounds the representations in the lexicon, making them interpretable. Passage representations can be pre-computed at index time to reduce query-time latency. We call our approach EPIC (Expansion via Prediction of Importance with Contextualization). We show that EPIC significantly outperforms prior importance-modeling and document expansion approaches. We also observe that the performance is additive with the current leading first-stage retrieval methods, further narrowing the gap between inexpensive and cost-prohibitive passage ranking approaches. Specifically, EPIC achieves a MRR@10 of 0.304 on the MS-MARCO passage ranking dataset with 78ms average query latency on commodity hardware. We also find that the latency is further reduced to 68ms by pruning document representations, with virtually no difference in effectiveness

    Efficient Document Re-Ranking for Transformers by Precomputing Term Representations

    Get PDF
    Deep pretrained transformer networks are effective at various ranking tasks, such as question answering and ad-hoc document ranking. However, their computational expenses deem them cost-prohibitive in practice. Our proposed approach, called PreTTR (Precomputing Transformer Term Representations), considerably reduces the query-time latency of deep transformer networks (up to a 42x speedup on web document ranking) making these networks more practical to use in a real-time ranking scenario. Specifically, we precompute part of the document term representations at indexing time (without a query), and merge them with the query representation at query time to compute the final ranking score. Due to the large size of the token representations, we also propose an effective approach to reduce the storage requirement by training a compression layer to match attention scores. Our compression technique reduces the storage required up to 95% and it can be applied without a substantial degradation in ranking performance

    Training Curricula for Open Domain Answer Re-Ranking

    Get PDF
    In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques

    Humans optional? Automatic large-scale test collections for entity, passage, and entity-passage retrieval

    Get PDF
    Manually creating test collections is a time-, effort-, and cost-intensive process. This paper describes a fully automatic alternative for deriving large-scale test collections, where no human assessments are needed. The empirical experiments confirm that automatic test collection and manual assessments agree on the best performing systems. The collection includes relevance judgments for both text passages and knowledge base entities. Since test collections with relevance data for both entity and text passages are rare, this approach provides a cost-efficient way for training and evaluating ad hoc passage retrieval, entity retrieval, and entity-aware text retrieval methods

    A Reproducibility Study of PLAID

    No full text
    The PLAID (Performance-optimized Late Interaction Driver) algorithm for ColBERTv2 uses clustered term representations to retrieve and progressively prune documents for final (exact) document scoring. In this paper, we reproduce and fill in missing gaps from the original work. By studying the parameters PLAID introduces, we find that its Pareto frontier is formed of a careful balance among its three parameters; deviations beyond the suggested settings can substantially increase latency without necessarily improving its effectiveness. We then compare PLAID with an important baseline missing from the paper: re-ranking a lexical system. We find that applying ColBERTv2 as a re-ranker atop an initial pool of BM25 results provides better efficiency-effectiveness trade-offs in low-latency settings. However, re-ranking cannot reach peak effectiveness at higher latency settings due to limitations in recall of lexical matching and provides a poor approximation of an exhaustive ColBERTv2 search. We find that recently proposed modifications to re-ranking that pull in the neighbors of top-scoring documents overcome this limitation, providing a Pareto frontier across all operational points for ColBERTv2 when evaluated using a well-annotated dataset. Curious about why re-ranking methods are highly competitive with PLAID, we analyze the token representation clusters PLAID uses for retrieval and find that most clusters are predominantly aligned with a single token and vice versa. Given the competitive trade-offs that re-ranking baselines exhibit, this work highlights the importance of carefully selecting pertinent baselines when evaluating the efficiency of retrieval engines. https://github.com/seanmacavaney/plaidrepr

    Adaptive Re-Ranking with a Corpus Graph

    No full text
    Search systems often employ a re-ranking pipeline, wherein documents (or passages) from an initial pool of candidates are assigned new ranking scores. The process enables the use of highly-effective but expensive scoring functions that are not suitable for use directly in structures like inverted indices or approximate nearest neighbour indices. However, re-ranking pipelines are inherently limited by the recall of the initial candidate pool; documents that are not identified as candidates for re-ranking by the initial retrieval function cannot be identified. We propose a novel approach for overcoming the recall limitation based on the well-established clustering hypothesis. Throughout the re-ranking process, our approach adds documents to the pool that are most similar to the highest-scoring documents up to that point. This feedback process adapts the pool of candidates to those that may also yield high ranking scores, even if they were not present in the initial pool. It can also increase the score of documents that appear deeper in the pool that would have otherwise been skipped due to a limited re-ranking budget. We find that our Graph-based Adaptive Re-ranking (GAR) approach significantly improves the performance of re-ranking pipelines in terms of precision- and recall-oriented measures, is complementary to a variety of existing techniques (e.g., dense retrieval), is robust to its hyperparameters, and contributes minimally to computational and storage costs. For instance, on the MS MARCO passage ranking dataset, GAR can improve the nDCG of a BM25 candidate pool by up to 8% when applying a monoT5 ranker

    An Approach for Weakly-Supervised Deep Information Retrieval

    No full text
    Recent developments in neural information retrieval models have been promising, but a problem remains: human relevance judgments are expensive to produce, while neural models require a considerable amount of training data. In an attempt to fill this gap, we present an approach that---given a weak training set of pseudo-queries, documents, relevance information---filters the data to produce effective positive and negative query-document pairs. This allows large corpora to be used as neural IR model training data, while eliminating training examples that do not transfer well to relevance scoring. The filters include unsupervised ranking heuristics and a novel measure of interaction similarity. We evaluate our approach using a news corpus with article headlines acting as pseudo-queries and article content as documents, with implicit relevance between an article's headline and its content. By using our approach to train state-of-the-art neural IR models and comparing to established baselines, we find that training data generated by our approach can lead to good results on a benchmark test collection
    corecore