165 research outputs found

    Systematics of Anti magnetic rotation in even-even Cd isotopes

    Full text link
    The lifetimes for the high spin levels of the yrast band of 110^{110}Cd has been measured. The estimated B(E2) values decrease with increase in angular momentum. This is the characteristic of Anti magnetic rotation as reported in 106,108^{106,108}Cd. However, alignment behavior of 110^{110}Cd is completely different from its even-even neighbors. A model based on classical particle plus rotor has been used to explore the underlying systematics and develop a self consistent picture for the observed behavior of these isotopes.Comment: 18 pages including 6 figures. Accepted to be published in PLB, with some modification in the tex

    Small Quadrupole Deformation for the Dipole Bands in 112In

    Full text link
    High spin states in 112^{112}In were investigated using 100^{100}Mo(16^{16}O, p3n) reaction at 80 MeV. The excited level have been observed up to 5.6 MeV excitation energy and spin \sim 20\hbar with the level scheme showing three dipole bands. The polarization and lifetime measurements were carried out for the dipole bands. Tilted axis cranking model calculations were performed for different quasi-particle configurations of this doubly odd nucleus. Comparison of the calculations of the model with the B(M1) transition strengths of the positive and negative parity bands firmly established their configurations.Comment: 10 pages, 11 figures, 2 table

    Influence of Incomplete Fusion Reaction on Complete Fusion Below 10 Mev/ Nucleon Energies

    Get PDF
    An attempt has been made in the present work to provide an ample opportunity to explore the information about the influence of incomplete fusion (ICF) reaction dynamics on complete fusion in heavy ion induced nuclear reactions. excitation functions for several evaporation residues produced in the interaction of projectile 16O with target 175lu have been measured over the wide projectile energy range ≈ 70-100 MeV. the recoil-catcher activation technique followed by the offline γ-ray spectroscopy has been used for the present measurements. In case of precursor decay, we have made use of Cavinato et al. formulation to calculate the independent cross-section of the identified residues. the measured efs are compared with theoretical predictions of statistical model code PACE-2 and any enhancement in the measured cross-section from theoretical prediction may be due to ICF reaction process. An attempt has been made to estimate the ICf contribution of the cross-section from the measured excitation function data and the dependence of ICf cross-section on projectile energy

    High-spin spectroscopy in 207^{207}At: Evidence of a 29/2+^{+} isomeric state

    Full text link
    Yrast and near-yrast states above the known 25/2+^{+} isomer in 207^{207}At are established for the first time. The level scheme is extended up to 47/2\hbar and 6.5 MeV with the addition of about 60 new γ\gamma-ray transitions. The half-life of the 25/2+^{+} isomer is revisited and a value of T1/2T_{1/2} = 107.5(9) ns is deduced. Evidence of a hitherto unobserved 29/2+^{+} isomer in 207^{207}At is presented. A systematic study of B(E3)B(E3) values for the transitions de-exciting the 29/2+^{+} isomer in the neighboring odd-AA At isotopes suggests a half-life in the 2-4 μ\mus range for this state in 207^{207}At. The experimental results are compared with large-scale shell-model calculations performed using the KHM3Y effective interaction in the ZZ = 50-126, NN = 82-184 model space and an overall good agreement is noted between the theory and the experiment. A qualitative comparison of the excited states and the isomers with analogous states in neighboring nuclei provides further insight into the structure of 207^{207}At.Comment: 15 pages, 13 figure

    Coexisting single-particle excitations and octupole correlations in transitional nucleus 217Ra\mathbf{^{217}Ra}

    Full text link
    The level structure of the transitional nucleus 217Ra\mathrm{^{217}Ra} has been extended with the addition of around 20 new transitions. The discrepancies between the placements of several transitions reported in the earlier studies are resolved. The newly-established negative-parity sequence at low excitation energies hints at the expected parity-doublet structures in this nucleus. The properties of the observed simplex bands are compared with that of similar bands in neighboring nuclei. Since the presence of parity-doublet structures reflect octupole correlations, theoretical calculations using reflection-asymmetric triaxial particle rotor model (RAT-PRM) have been performed. A comparison of the observed features of the simplex bands with the predictions of the RAT-PRM calculations suggests that 217Ra\mathrm{^{217}Ra} exhibits an intermediate the behavior between the extremes of spherical and octupole-deformed nuclei. The termination of the simplex bands at intermediate energies and the structures lying above reflect the dominance of the single-particle excitations at higher excitation energies.Comment: 15 pages, 16 figure

    Projectile Break-up Effect on Fusion in 16O + 156Gd Reaction at Energy Range 4.3-6.3 MeV/A

    Get PDF
    103-108We discuss our present understanding of the incomplete fusion (ICF) reaction dynamics, the excitation function of six evaporation residues (ERs) have been measured in 16O + 156Gd reaction at projectile energy range, E/A ~ 4.3-6.3 MeV/Nucleon. Some of the ERs are produced directly & indirectly (i.e. through pre-cursor), the pre-cursor contributions have been separated out from the measured cumulative cross-section with the help of Cavinato et al.1. After correcting the pre-cursor contribution, the independent yield has been compared with the statistical model code PACE-22, which describes the fusion reaction cross section. In order to optimize the parameter of the code PACE-2 that reproduces the cross section of all the complete fusion (CF) channels like xn and /or pxn-channels. Using the same set of input parameters, cross section of the ERs populated via incomplete fusion (ICF) channels have been measured. The enhancement in the measured cross section of the ERs populated via ICF channels over the PACE-2 prediction have been measured, which indicates the occurrence of the break-up of projectile 16O into (12C+α) and/or (8Be+2α) leading to ICF reaction dynamics
    corecore