6,366 research outputs found

    Non-thermal X-ray and Gamma-ray Emission from the Colliding Wind Binary WR140

    Get PDF
    WR140 is the archetype long-period colliding wind binary (CWB) system, and is well known for dramatic variations in its synchrotron emission during its 7.9-yr, highly eccentric orbit. This emission is thought to arise from relativistic electrons accelerated at the global shocks bounding the wind-collision region (WCR). The presence of non-thermal electrons and ions should also give rise to X-ray and gamma-ray emission from several separate mechanisms, including inverse-Compton cooling, relativistic bremsstrahlung, and pion decay. We describe new calculations of this emission and make some preliminary predictions for the new generation of gamma-ray observatories. We determine that WR140 will likely require several Megaseconds of observation before detection with INTEGRAL, but should be a reasonably strong source for GLAST.Comment: 4 pages, 1 figure, contribution to "Massive Stars and High-Energy Emission in OB Associations"; JENAM 2005, held in Liege (Belgium

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    Radio emission from the massive stars in the Galactic Super Star Cluster Westerlund 1

    Get PDF
    Current mass-loss rate estimates imply that main sequence winds are not sufficient to strip away the H-rich envelope to yield Wolf-Rayet (WR) stars. The rich transitional population of Westerlund 1 (Wd 1) provides an ideal laboratory to observe mass-loss processes throughout the transitional phase of stellar evolution. An analysis of deep radio continuum observations of Wd 1 is presented. We detect 18 cluster members. The radio properties of the sample are diverse, with thermal, non-thermal and composite thermal/non-thermal sources present. Mass-loss rates are ~10^{-5} solar mass/year across all spectral types, insufficient to form WRs during a massive star lifetime, and the stars must undergo a period of enhanced mass loss. The sgB[e] star W9 may provide an example, with a mass-loss rate an order of magnitude higher than the other cluster members, and an extended nebula of density ~3 times the current wind. This structure is reminiscent of luminous blue variables, and one with evidence of two eras of high, possibly eruptive, mass loss. Three OB supergiants are detected, implying unusually dense winds. They also may have composite spectra, suggesting binarity. Spatially resolved nebulae are associated with three of the four RSGs and three of the six YHGs in the cluster, which are due to quiescent mass loss rather than outbursts. For some of the cool star winds, the ionizing source may be a companion star though the cluster radiation density is sufficiently high to provide the necessary ionizing radiation. Five WR stars are detected with composite spectra, interpreted as arising in colliding-wind binaries.Comment: 15 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Radio emission from the massive stars in Westerlund 1

    No full text
    The diverse massive stellar population in the young massive clusterWesterlund 1 (Wd 1) provides an ideal laboratory to observe and constrain mass-loss processes throughout the transitional phase of massive star evolution. A set of high sensitivity radio observations of Wd 1 leads to the detection of 18 cluster members, a sample dominated by cool hypergiants, but with detections among hotter OB supergiants and WR stars. Here the diverse radio properties of the detected sample are briefly described. The mass-loss rates of the detected objects are surprisingly similar across the whole transitional phase of massive star evolution, at ~ 10-5 Mo yr−1. Such a rate is insufficient to strip away the H-rich mantle in a massive star lifetime, unless the stars go through a period of enhanced mass-loss. The radio luminous star W9 provides an example of such an object, with evidence for two eras of mass-loss with rates of ~ 10−4 Mo yr−1
    corecore