17 research outputs found

    A molecular picture of the problems in ensuring structural purity of tazofelone

    Get PDF
    Almost twenty years after the crystal polymorphism of tazofelone was first studied at Lilly, the compound was revisited by calculating the crystal energy landscape and complementing the calculations with experimental work for calibration purposes. The crystal structure prediction study confirmed the stability of racemic form II (RCII) and showed that the racemic compound had greater potential for polymorphism than the single enantiomer. The seeding experiment that has previously been shown to produce a racemic solid solution (SS) correlates with the isostructurality between some low energy racemic structures and the enantiopure form. Other low energy structures have the same layer structure as both racemic polymorphs and the newly-discovered, but closely related, polymorph RCIII, which accounts for the difficulty in obtaining phase pure samples of the metastable RCI and RCIII and the problems of structural purity evidenced by streaked diffraction spots for RCI–III in the single crystal diffraction. This molecular picture of the problems in ensuring structural purity in the layer structure polymorphs of tazofelone not only explains the crystal dependent thermochemistry measurements of tazofelone, but also shows the value of combining a range of experimental and computational techniques to investigate the organic solid state

    Understanding air release through air valves

    Full text link
    [EN] Water transients with entrapped air can originate large pressure peaks that can severely damage distribution networks. Entrapped air can have a damping or amplifying effect on these undesirable pressure peaks. Unfortunately, the complexity of the phenomenon too often makes it difficult to obtain a fully reliable prediction about when air pockets will mitigate or accentuate water transients. Furthermore, the value of some of the parameters involved in the conventional numerical models cannot be calculated or measured and need to be determined through a calibration process. With the aim of overcoming most of the aforementioned uncertainties, this paper summarizes a complete set of tests conducted at WL | Delft Hydraulics. These tests were simulated by means of a tailored numerical model that includes a set of parameters whose values were determined by means of a calibration process. The experimental setup, a large-scale facility, consisted of a single steep pipeline with an air valve installed at its top end. Air release through different air valves was tested under different conditions. © 2011 American Society of Civil Engineers.This research has been possible thanks to the European Community Programme "Access to Major Research Infrastructure" under the Fifth Framework Growth Programme (Contract No. GIRT-CT-2002-05069).Carlos Alberola, MDM.; Arregui De La Cruz, F.; Cabrera Marcet, E.; Palau, C. (2011). Understanding air release through air valves. Journal of Urban Planning and Development. 137(4):461-469. doi:10.1061/(ASCE)HY.1943-7900.0000324S461469137

    Simulation of the Rapid Filling of a Transmission Main Undergoing Flow Regime Transition

    No full text

    Optimization of Surge Protection Devices in Water Distribution Systems

    No full text

    Water Distribution System Optimization Using Metamodels

    Full text link
    corecore